首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 291 毫秒
1.
Regulation of extracellular matrix gene expression by mechanical stress.   总被引:19,自引:0,他引:19  
M Chiquet 《Matrix biology》1999,18(5):417-426
  相似文献   

2.
The intracellular mechanisms controlling mechano-dependent production of the two extracellular matrix proteins collagen XII and fibronectin were analyzed. Fibroblasts were cultured on either tensed (attached) or released (floating) collagen type-I gels, respectively. Collagen XII and fibronectin production was three- to fivefold higher under tensed than under released conditions. The general inhibitor of tyrosine phosphorylation, genistein (50 microM), and the MAP kinase inhibitor PD98059 (20 microM) selectively reduced collagen XII accumulation by tensed cultures. Addition of PD98059, but not genistein, downregulated tensile stress-induced tyrosine phosphorylation levels of ERK1/2 and focal adhesion kinase. Staurosporine as well as pretreatment with phorbol ester, which constitute means to downregulate classical and novel PKC activity, specifically blocked collagen XII but not fibronectin accumulation in tensed fibroblasts. ERK1/2 phosphorylation levels were not affected by staurosporine treatment. Chronic exposure to the protein kinase C inhibitors bisindolylmaleimide and calphostin C blocked increased production of both fibronectin and collagen XII from cells under tension. The data manifest that the mechano-dependent production of collagen XII and fibronectin requires separate pathways. The FAK-ERK1/2 pathway, a genistein-sensitive tyrosine kinase, and a distinct classical/novel PKC appear selectively required for increased production of collagen XII in cells under tensile stress, whereas fibronectin induction is regulated by a different PKC-dependent pathway.  相似文献   

3.
Extracellular matrix alters PDGF regulation of fibroblast integrins   总被引:11,自引:3,他引:8       下载免费PDF全文
  相似文献   

4.
Human skin fibroblasts, both in suspension and cultured within a three-dimensional collagen matrix have been examined by electron spin resonance ESR using the probe 5-doxyl stearic acid. The order of the plasma membrane was found to be strongly influenced by the collagen matrix, being greater for cells within the collagen gel than in suspension. The collagen cultures used in this study were either left attached to the walls of the plastic culture dish (‘attached’ gels) or dislodged and allowed to float freely in the culture medium (‘floating’ gels). Membrane order increased with time in attached gels, reaching a steady value after 2–3 h. A further increase in order was observed when floating gels were prepared 24 h later. Cell morphology within the collagen gel culture was observed to vary considerably, with time and mode of culture. Increased order, over that observed in suspension, was also found for cells attached to other substrata. The data indicate that the increase in membrane order observed in cells embedded within a three-dimensional collagen gel matrix compared with cells in suspension does not correlate with a particular cell morphology in the gel, but rather appears to result from the establishment of adhesive interactions with the surrounding collagen fibres.  相似文献   

5.
目的:检测成肌细胞钙网蛋白(CRT)在循环拉伸应力刺激下的表达变化。方法:体外构建面颌部成肌细胞力学刺激模型。加力组以0.5赫兹的加载频率和10%细胞拉伸变形幅度对细胞进行加力培养1h,6h,12h,24h,运用实时荧光定量PCR技术跟Westem Blot技术分别检测在周期性张应力作用下成肌细胞CRT在基因水平及蛋白水平的表达变化。结果:当对细胞加力6h后,CRTmRNA及蛋白表达量开始增多,加力12h后CRTmRNA及蛋白表达量到达最多(P〈0.01),加力0h组与加力12h组之间差异有显著的统计学意义(P〈0.01)。结论:持续的周期性张应力刺激下CRTmRNA及蛋白表达增加。  相似文献   

6.
Corneal transparency depends on the architecture of the stromal extracellular matrix, including fibril diameter, packing, and lamellar organization. The roles of collagen types XII and XIV in regulation of corneal fibrillogenesis and development were examined. The temporal and spatial expression patterns were analyzed using semi-quantitative RT-PCR, in situ hybridization, Western analysis, and immunohistochemistry. Expression of types XII and XIV collagens in cornea development demonstrated that type XII collagen mRNA levels are constant throughout development (10D-adult) while type XIV mRNA is highest in early embryonic stages (10D-14D), decreasing significantly by hatching. The spatial expression patterns of types XII and XIV collagens demonstrated a homogeneous signal in the stroma for type XIV collagen, while type XII collagen shows segregation to the sub-epithelial and sub-endothelial stroma during embryonic stages. The type XII collagen in the anterior stroma was an epithelial product during development while fibroblasts contributed in the adult. Type XIV collagen expression was highest early in development and was absent by hatching. Both types XII and type XIV collagen have different isoforms generated by alternative splicing that may alter specific interactions important in fibrillogenesis, fibril-fibril interactions, and higher order matrix assembly. Analysis of these splice variants demonstrated that the long XII mRNA levels were constant throughout development, while the short XII NC3 mRNA levels peaked early (12D) followed by a decrease. Both type XIV collagen NC1 splice variants are highest during early stages (12D-14D) decreasing by 17D of development. These data suggest type XII collagen may have a role in development of stromal architecture and maintenance of fibril organization, while type XIV collagen may have a role in regulation of fibrillogenesis.  相似文献   

7.
8.
9.
Strain-related collagen gene expression in human osteoblast-like cells   总被引:2,自引:0,他引:2  
The gene expression of cells in the musculoskeletal system, such as in bone, cartilage, ligament and tendon, is profoundly affected by mechanical loading. Previous studies have demonstrated that the expression of many genes, including collagen types I and III, are affected by mechanical strain in diverse cell types, such as human osteoblast-like SaOs-2 cells. However, whether the effect of mechanical loading on collagen gene expression is strain-related remains unclear. The goal of this study was to determine the relationship between mechanical strain and the gene expression of collagen types I and III in SaOs-2 cells. A Flexercell cellular mechanical loading system was used to subject SaOs-2 cells to equibiaxial cyclic tensile stress at a rate of 0.5 Hz with various strains of 5%, 7.5%, 10%, and 12.5% for 24 h. The relative amount of mRNA of both collagen I and collagen III increased at 5% strain compared with that of the control. As the strain increased, the relative amount of mRNA of collagen I remained stable at strain levels up to 12.5%. However, the mRNA for collagen III began to drop when the strain was greater than 5%, until a 10% strain was reached. From the application of a 10% strain through the maximum loading of a 12.5% strain, the relative amount of collagen III mRNA remained stable at amounts lower than that of the control. Thus, the gene expression of collagen types I and III responds differentially to mechanical strain at various magnitudes.  相似文献   

10.
Cysteine-rich motor neuron 1 (CRIM1) is expressed in vascular endothelial cells and plays a crucial role in angiogenesis. In this study, we investigated the expression of CRIM1 mRNA in human umbilical vein endothelial cells (HUVECs). CRIM1 mRNA levels were not altered in vascular endothelial growth factor (VEGF)-stimulated monolayer HUVECs or in cells in collagen gels without VEGF. In contrast, the expression of CRIM1 mRNA was elevated in VEGF-stimulated cells in collagen gels. The increase in CRIM1 mRNA expression was observed even at 2 h when HUVECs did not form tubular structures in collagen gels. Extracellular signal-regulated kinase (Erk) 1/2, Akt and focal adhesion kinase (FAK) were activated by VEGF in HUVECs. The VEGF-induced expression of CRIM1 mRNA was significantly abrogated by PD98059 or PF562271, but was not affected by LY294002. These results demonstrate that CRIM1 is an early response gene in the presence of both angiogenic stimulation (VEGF) and environmental (extracellular matrix) factors, and Erk and FAK might be involved in the upregulation of CRIM1 mRNA expression in vascular endothelial cells.  相似文献   

11.
To learn more about the relationship between extracellular matrix organization, cell shape, and cell growth control, we studied DNA synthesis by fibroblasts in collagen gels that were either attached to culture dishes or floating in culture medium during gel contraction. After 4 days of contraction, the collagen density (initially 1.5 mg/ml) reached 22 mg/ml in attached gels and 55 mg/ml in floating gels. After contraction, attached collagen gels were well organized; collagen fibrils were aligned in the plane of cell spreading; and fibroblasts had an elongated, bipolar morphology. Floating collagen gels, however, were unorganized; collagen fibrils were arranged randomly; and fibroblasts had a stellate morphology. DNA synthesis by fibroblasts in contracted collagen gels was suppressed if the gels were floating in medium but not if the gels were attached, and inhibition was independent of the extent of gel contraction. Therefore, growth of fibroblasts in contracted collagen gels could be regulated by differences in extracellular matrix organization and cell shape independently of extracellular matrix density. We also compared the responses of fibroblasts in contracted collagen gels and monolayer culture to peptide growth factors including fibroblast growth factor, platelet-derived growth factor, transforming growth factor-beta, and interleukin 1. Cells in floating collagen gels were generally unresponsive to any of the growth factors. Cells in attached collagen gels and monolayer culture were affected similarly by fibroblast growth factor but not by the others. Our results indicate that extracellular matrix organization influenced not only cell growth, but also fibroblast responsiveness to peptide growth factors.  相似文献   

12.
13.
We studied the effect of cyclic mechanical stretching on the proliferation and collagen mRNA expression and protein production of human patellar tendon fibroblasts under serum-free conditions. The role of transforming growth factor-beta1 (TGF-beta1) in collagen production by cyclically stretched tendon fibroblasts was also investigated. The tendon fibroblasts were grown in microgrooved silicone dishes, where the cells were highly elongated and aligned with the microgrooves. Cyclic uniaxial stretching with constant frequency and duration (0.5 Hz, 4 h) but varying magnitude of stretch (no stretch, 4%, and 8%) was applied to the silicone dishes. Following the period of stretching, the cells were rested for 20 h in stretching-conditioned medium to allow for cell proliferation. In separate experiments, the cells were stretched for 4h and then rested for another 4 h. Samples of the medium, total cellular RNA and protein were used for analysis of collagen and TGF-beta1 gene expression and production. It was found that there was a slight increase in fibroblast proliferation at 4% and 8% stretch, compared to that of non-stretched fibroblasts, where at 8% stretch the increase was significant. It was also found that the gene expression and protein production of collagen type I and TGF-beta1 increased in a stretching-magnitude-dependent manner. And, levels of collagen type III were not changed, despite gene expression levels of the protein being slightly increased. Furthermore, the exogenous addition of anti-TGF-beta1 antibody eliminated the increase in collagen type I production under cyclic uniaxial stretching conditions. The results suggest that mechanical stretching can modulate proliferation of human tendon fibroblasts in the absence of serum and increase the cellular production of collagen type I, which is at least in part mediated by TGF-beta1.  相似文献   

14.
15.
In order to investigate possible cell positional effects on the gene expression of human dermal fibroblasts, the authors cultured the cells on non-coated polystyrene culture dishes, type I collagen-coated dishes, or collagen gels formed by type I collagen, or suspended them in type I collagen gels and measured collagen synthesis by the cells. The production rate of type I collagen was similar whether cells were cultured on non-coated polystyrene or on type I collagen-coated dishes, but it was suppressed significantly when the cells were placed within the collagen gel matrix. Time-dependent expression of genes for α1(I) and α2(I) collagen chains was measured by Northern blot analysis. A significant increase in mRNA levels for these chains was observed when the cells were cultured for three days on type I collagen-coated dishes or on collagen gels. On the other hand, a significant decrease in the mRNA levels was observed after 2 days and later, when the cells were cultured within type I collagen gel matrix. These results indicate that human dermal fibroblasts recognize their position on or in type I collagen (extracellular matrix) and respond by changing their expression patterns of type I collagen chain genes. The results of the kinetics of gene expression also suggest that upregulation and downregulation of type I collagen genes are controlled by different mechanisms.  相似文献   

16.
The effects of the lysosomal proteinase cathepsin D on the mechanical properties of adult human articular cartilage were examined in detail in 7 joints within the age range 21 to 72 years. The results of a preliminary study on the effects of the lysosomal proteinase cathepsin B1 and clostridial collagenase on the mechanical properties of cartilage are also presented. Cartilage which had been incubated with either cathepsin D or cathepsin B1 showed increased deformation in uniaxial compression perpendicular to the articular surface. The enzyme-treated cartilage also showed decreased tensile stiffness at low values of stress. This effect was more pronounced in specimens from the deeper zone of cartilage than in specimens from the superficial zone. It was also more pronounced in specimens which were aligned perpendicular to the predominant alignment of the collagen fibres in the superficial zone than in specimens which were parallel to the collagen fibres. At higher stresses the tensile stiffness of the treated cartilage was not significantly different from that of the untreated tissue. The tensile fracture stress of the cartilage was also not significantly reduced by the action of cathepsin D. In contrast to the effects observed with the cathepsins, the preliminary results obtained by incubating cartilage for 24 h with clostridial collagenase showed that both the tensile stiffness and the fracture stress were considerably lower than the corresponding values for the untreated tissue. Biochemical analysis of the incubation media, and the specimens, revealed that a large proportion of the proteoglycans was released from the cartilage by each of the three enzymes. The proportion of the total collagen which was released from the cartilage was different for each enzyme: cathepsin D released between 0 and 1.5 per cent, cathepsin B1 released between 2.3 and 4.3 per cent and collagenase released between 5.3 and 27.8 per cent of the collagen after 24 h.  相似文献   

17.
The effects of the lysosomal proteinase cathepsin D on the mechanical properties of adult human articulage were examined in detail in 7 joints within the age rangee 21 to 72 years. The results of preliminary study on the effects of the lysosomal proteinase cathepsin B1 and clostridial collagenase on the mechanical properties of cartilage are also presented.Cartilage which had been incubated with either cathepsin D or cathepsin B1 showed increased deformation in unixial compression perpendicular to the articular surface.The enzyme-treated cartilage also showed decreased tensile stiffness at low values of stress. This effect was more pronounced in specimens from the deeper zone of cartilage than in specimens from the superficial zone. It was also more pronounced in specimens which were aligned perpendicular to the predominant alignment of the collagen fibres in the superficial zone than in specimens which were parallel to the collagen fibres.At higher stresses the tensile stiffness of the treated cartilage was not significantly different from that of the untreated tissue. The tensile fracture stress of the cartilage was not significantly reduced by the action of cathepsin D.In contrast to the effects observed with the cathepsins, the preliminary results obtained by incubating cartilage for 24 h with clostridial collagenase showed that both the tensile stiffness and the fracture stress were considerably lower than the corresponding values for the untreated tissue.Biochemical analysis of the incubation media, and the specimens, reveled that a large proportion of the proteoglycans was released from the cartilage by each of the freeze enzymes. The proportion of the total collagen which was released from the cartilage was different for each enzyme: cathepsin D released between 0 and 1.5 per cent, cathepsin B1 released between 2.3 and 4.3 per cent and collagenase relesed between 5.3 and 27.8 per cent of the collagen after 24 h.  相似文献   

18.
Changes in cell shape are postulated to modulate gene expression during differentiation of a number of cell types, including rabbit synovial fibroblasts, which are inducible for expression of the zymogen form of the metalloendopeptidase, collagenase. In the work presented here, fibroblasts cultured on and within hydrated collagen gels were allowed to contract by release of the gels from the sides of the culture dish. Within 24 h of cell release, synthesis and secretion of procollagenase was initiated in the absence of any chemical manipulation. Fibroblasts grown in and on collagen also responded to 12-O-tetradecanoylphorbol-13-acetate and cytochalasin B with morphologic change and induced procollagenase. However, colchicine, which altered morphology to varying degrees in cells on plastic, on collagen, and within collagen gels, did not induce procollagenase expression. In all cases, the enzyme was induced only after reorganization of polymerized actin, rather than after a change in cellular morphology per se. As a first approach to identifying other aspects of the stimulated phenotype that could affect collagen turnover, the expression of collagen and endogenous metalloproteinase inhibitors in relation to procollagenase secretion was investigated. Collagen secretion by fibroblasts decreased when procollagenase secretion was induced by the pharmacologic agents, but not when cells were stimulated by contraction on or within collagen gels. The expression of two endogenous inhibitors was not coordinately regulated with induction of procollagenase. Therefore, the extracellular matrix and the cellular actin cytoskeleton may transduce signals that modulate the tissue remodeling phenotype of fibroblasts.  相似文献   

19.
Mechanical stretch affects the healing and remodeling process of the anterior cruciate ligament (ACL) after surgery in important ways. In this study, the effects of mechanical stress on gene expression of type I and III collagen by cultured human ACL cells and roles of transforming growth factor (TGF)-beta1 in the regulation of mechanical strain-induced gene expression were investigated. Uniaxial cyclic stretch was applied on ACL cells at 10 cycles/min with 10% length stretch for 24 h. mRNA expression of the type I and type III collagen was increased by the cyclic stretch. TGF-beta1 protein in the cell culture supernatant was also increased by the stretch. In the presence of anti-TGF-beta1 antibody, stretch-induced increase in type I and type III mRNA expression was markedly ablated. The results suggest that the stretch-induced mRNA expression of the type I and type III collagen is mediated via an autocrine mechanism of TGF-beta1 released from ligament cells.  相似文献   

20.
Described in the present paper is the immunolocalization of the extracellular matrix proteins (e.g., fibronectin, collagen Types I and III) in the bovine ovary, with special attention to preantral follicles. In addition, we have shown, histochemically and ultrastructurally, that mechanically isolated bovine preantral follicles are surrounded by an intact basement membrane. After 24 h of culture in serum-free medium, only 20.4% of these follicles attached to a plastic substrate. We showed that covering the plastic with extracellular matrix proteins (i.e., fibronectin, collagen Type I and matrigel) significantly increased the percentage of attached follicles to 76.0, 65.2 and 80.4%, respectively, while laminin had no effect (18.6%). When preantral follicles were embedded within three-dimensional collagen gels, no loss of follicles was observed. Restoring surface interactions between preantral follicles and the extracellular matrix in vitro, either in a two- or a three-dimensional system, might be important for maintaining follicular viability and growth in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号