首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Removal of vascular smooth muscle cells (SMC) from their native environment alters the biochemical and mechanical signals responsible for maintaining normal cell function, causing a shift from a quiescent, contractile phenotype to a more proliferative, synthetic state. We examined the effect on SMC function of culture on two-dimensional (2D) substrates and in three-dimensional (3D) collagen Type I gels, including the effect of exogenous biochemical stimulation on gel compaction, cell proliferation, and expression of the contractile protein smooth muscle alpha-actin (SMA) in these systems. Embedding of SMC in 3D collagen matrices caused a marked decrease in both cell proliferation and expression of SMA. The presence of the extracellular matrix modulated cellular responses to platelet-derived growth factor BB, heparin, transforming growth factor-beta1, and endothelial cell-conditioned medium. Cell proliferation and SMA expression were shown to be inversely related, while gel compaction and SMA expression were not correlated. Taken together, these results show that SMC phenotype and function can be modulated using biochemical stimulation in vitro, but that the effects produced are dependent on the nature of the extracellular matrix. These findings have implications for the study of vascular biology in vitro, as well as for the development of engineered vascular tissues.  相似文献   

2.
Using different endothelial/smooth muscle cell co-culture modes to simulate the intimal structure of blood vessels, the water filtration rate and the infiltration/accumulation of LDL of the cultured cell layers were studied. The three cell culture modes of the study were: (i) The endothelial cell monolayer (EC/Φ); (ii) endothelial cells directly co-cultured on the smooth muscle cell monolayer (EC-SMC); (iii) endothelial cells and smooth muscle cells cultured on different sides of a Millicell-CM membrane (EC/SMC). It was found that under the same condition, the water filtration rate was the lowest for the EC/SMC mode and the highest for the EC/Φ mode, while the infiltration/accumulation of DiI-LDLs was the lowest in the EC/Φ mode and the highest in the EC-SMC mode. It was also found that DiI-LDL infiltration/accumulation in the cultured cell layers increased with the increasing water filtration rate. The results from the in vitro model study therefore suggest that the infiltration/accumulation of the lipids within the arterial wall is positively correlated with concentration polarization of atherogenic lipids, and the integrity of the endothelium plays an important role in the penetration and accumulation of atherogenic lipids in blood vessel walls.  相似文献   

3.
Unusual tubular structures have been observed in rat aortic smooth muscle cells (SMC) grown in culture. These tubular structures have several characteristics that strongly suggest that they are lysosomes: they are bounded by a single membrane bilayer, contain densely staining material, and acid phosphatase activity. Furthermore, these structures are present in living cells, as demonstrated by their ability to accumulate the membrane-impermeable fluorescent dye lucifer yellow CH. In ultrastructural preparations they are best seen in samples that are cryofixed by rapid freezing and then freeze-substituted in osmium-acetone solutions. Conventional chemical fixation did not appear to preserve these structures to as great an extent as did rapid freezing. Comparison of SMC in vitro to the same cells in situ revealed differences in lysosome number as well as morphological appearance. Thus, the culturing of rat SMC leads to the formation of unusual tubular lysosomes whose ultrastructural appearance is particularly sensitive to the methods employed for examination.  相似文献   

4.
Intestinal smooth muscle cells (SMC) produce the fibrotic tissue, strictures, that characterize Crohn's disease. These SMC change their phenotype from a contractile muscle form to an inflammation-responsive form that migrates and synthesizes a collagen matrix. It is postulated that the inflammatory responsive SMC form associates differently with its surrounding collagen matrix compared to the normal SMC form. SMC derived from Crohn's diseased and uninvolved bowel were sustained in cell culture. Cultured SMC incorporated in collagen lattices have the capacity to reduce the size of that lattice, referred to as lattice contraction. At day 2, Crohn's SMC-populated collagen lattices were reduced to 21% of their initial area, while non-Crohn's SMC collagen lattices were reduced to 8%. Crohn's SMC demonstrate retarded lattice contraction compared to non-Crohn's SMC. When grown in monolayer culture, Crohn's-derived SMC cover 30% more area than non-Crohn's SMC. By Western blot analysis Crohn's SMC express more gelsolin, an actin-binding protein found elevated in cells exhibiting increased cell motility. Was the increased expression of gelsolin related to retarded collagen lattice contraction? Intracellular levels of gelsolin were elevated by the electroporation of plasma gelsolin protein into suspended non-Crohn's SMC. When incorporated in collagen lattices, gelsolin loaded cells showed retarded lattice contraction compared to SMC loaded with albumin. Crohn's SMC show increased expression of gelsolin, which may be associated with a diminished capacity to reorganize collagen fiber bundles. It is suggested that increased concentrations of gelsolin in Crohn's SMC is consistent with enhanced cell migration as a consequence of the inflammatory state of Crohn's diseased intestine.  相似文献   

5.
Angiogenesis in vitro]   总被引:2,自引:0,他引:2  
J Hayashi 《Human cell》1999,12(1):31-35
A quantitative angiogenesis in vitro was investigated by culturing bovine carotid artery endothelial cells between two layers of type I collagen gel. Cells become organized into tube-like structures within few days. Ultrastructurally, tubular structures were composed of one to several endothelial cells containing pinocytotic vesicles and cytoplasmic projections, and linked by junctional complexes. A basal lamina-like structure surrounded the abluminal surface. Glucose, insulin, insulin-like growth factor I at pathophysiological high concentrations significantly stimulated tube-forming activity of endothelial cells by stimulating cell migration.  相似文献   

6.
To study the biology of the endothelium under conditions that mimic the architecture of the vessel wall, endothelial cells were grown on a collagen lattice containing a multilayer of smooth muscle cells. Light and electron microscopy of such cultures revealed a confluent monolayer of flattened endothelial cells. In co-culture, endothelial cells tend to elongate, whereas in the absence of smooth muscle cells, the endothelial cells show the polygonal morphology typical for cultures of endothelial cells grown on polystyrene substrates. As conditioned culture media of endothelial cells contain substances that may both promote or inhibit the growth of smooth muscle cells, the availability of this vessel wall model prompted us to examine to what extent endothelial cells regulate the proliferation of smooth muscle cells when these cells are maintained in co-culture. Here we show that endothelial cells suppress the proliferation of co-existing smooth muscle cells. This finding suggests that under physiological conditions the balance of the action of growth-promoting and growth-inhibiting substances produced by endothelial cells is in favour of the latter.  相似文献   

7.
Vascular smooth muscle cells (SMCs) undergo morphological and phenotypic changes when cultured in vitro. To investigate whether SMC morphology regulates SMC functions, bovine aortic SMCs were grown on micropatterned collagen strips (50-, 30-, and 20-microm wide). The cell shape index and proliferation rate of SMCs on 30- and 20-microm strips were significantly lower than those on non-patterned collagen (control), and the spreading area was decreased only for cells patterned on the 20-microm strips, suggesting that SMC proliferation is dependent on cell shape index. The formation of actin stress fibers and the expression of alpha-actin were decreased in SMCs on the 20- and 30-microm collagen strips. SMCs cultured on micropatterned biomaterial poly-(D,L-lactide-co-glycolide) (PLGA) with 30-microm wide grooves also showed lower proliferation rate and less stress fibers than SMCs on non-patterned PLGA. Our findings suggest that micropatterned matrix proteins and topography can be used to control SMC morphology and that elongated cell morphology decreases SMC proliferation but is not sufficient to promote contractile phenotype.  相似文献   

8.
Tissue engineering of vascular grafts.   总被引:8,自引:0,他引:8  
A Ratcliffe 《Matrix biology》2000,19(4):353-357
The challenge of tissue engineering blood vessels with the mechanical properties of native vessels, and with the anti-thrombotic properties required is immense. Recent advances, however, indicate that the goal of providing a tissue-engineered vascular graft that will remain patent in vivo for substantial periods of time, is achievable. For instance, collagen gels have been used to fabricate a tissue in vitro that is representative of a native vessel: an acellular collagen tubular structure, when implanted as a vascular graft, was able to function, and to become populated with host cells. A completely cellular approach culturing cells into tissue sheets and wrapping these around a mandel was able to form a layered tubular structure with impressive strength. Culture of cells onto a biodegradable scaffold within a dynamic bioreactor, generated a tissue-engineered vascular graft with substantial stiffness and, when lined with endothelial cells, was able to remain patent for up to 4 weeks in vivo. In our experiments, use of a non-degradable polyurethane scaffold and culture with smooth muscle cells generated a construct with mechanical properties similar to native vessels. This composite tissue engineered vascular graft with an endothelial layer formed using fluid shear stress to align the endothelial cells, was able to remain patent with an neointima for up to 4 weeks. These results show that tissue engineering of vascular grafts has true potential for application in the clinical situation.  相似文献   

9.
Summary The development of pulmonary hypertension in a wide variety of human disease states and experimental animal models characterized by chronic alveolar hypoxia is mediated by two pathologic vascular processes, a) vasoconstriction and b) vasoconstruction (structural remodeling). The anatomic changes seen within the pulmonary circulation include a) increased deposition of collagen and elastin in the adventitial layer and b) aberrant pulmonary vascular smooth muscle cell proliferation and maturation in the medial segments. Despite the demonstrated ability of pharmacologic manipulation in the experimental animal to ameliorate both the structural and hemodynamic changes, the actual etiologic mechanisms are only beginning to be explored. Using the cell culture technique of co-cultivation, we have investigated the potential role of bovine pulmonary arterial endothelial cell-derived factors in mediating abnormal bovine smooth muscle cell growth under conditions of reduced oxygen tension. We have demonstrated that these cultured endothelial cells exposed in vitro to reduced levels of atmospheric oxygen concentrations of 5.0% and 2.5% O2 for durations of 24 to 72 h produce and secrete soluble growth factor(s) which stimulate smooth muscle cell proliferation when compared to cells maintained under standard tissue culture oxygen conditions of 95% room air. This growth-stimulatory effect required the concomitant presence of serum factors (0.5% fetal bovine serum), was inhibited by heparin, was distinct from platelet-derived growth factor, and seemed to have a molecular weight greater than 14 000 Da. We conclude that reduced levels of oxygen tension in vitro can selectively induce pulmonary arterial endothelial cells to release mitogen(s) which can stimulate vascular smooth muscle replication. Furthermore, we speculate that this in vitro finding may be of importance as an etiologic mechanism to explain the accelerated smooth muscle cell growth characteristic of hypoxic pulmonary arteriopathy.  相似文献   

10.
We described the ex vivo production of mature and functional human smooth muscle cells (SMCs) derived from skeletal myoblasts. Initially, myoblasts expressed all myogenic cell-related markers such as Myf5, MyoD and Myogenin and differentiate into myotubes. After culture in a medium containing vascular endothelial growth factor (VEGF), these cells were shown to have adopted a differentiated SMC identity as demonstrated by alphaSMA, SM22alpha, calponin and smooth muscle-myosin heavy chain expression. Moreover, the cells cultured in the presence of VEGF did not express MyoD anymore and were unable to fuse in multinucleated myotubes. We demonstrated that myoblasts-derived SMCs (MDSMCs) interacted with endothelial cells to form, in vitro, a capillary-like network in three-dimensional collagen culture and, in vivo, a functional vascular structure in a Matrigel implant in nonobese diabetic-severe combined immunodeficient mice. Based on the easily available tissue source and their differentiation into functional SMCs, these data argue that skeletal myoblasts might represent an important tool for SMCs-based cell therapy.  相似文献   

11.
We compared the proliferation of bovine aortic cells grown in collagen lattices. Smooth muscle cells continued to divide for 2 weeks while adventitial fibroblasts ceased to divide after 4-5 days. Endothelial cells did not proliferate within an untreated collagen lattice; however, if the lattice was covered with culture medium, endothelial cells populated its surface and proliferated to form a monolayer. We also found that both smooth muscle cells and endothelial cells, like fibroblasts, are able to contract a collagen lattice to a small fraction of its original volume, although endothelial cells are able to do so only if the lattice is covered with culture medium.  相似文献   

12.
Aortic smooth muscle cells (SMC) grown on conventional plastic culture dishes have morphological and functional properties of dedifferentiated cells in sub-culture. We examined the influence of collagen gels on the cell shape and arrangement. The cells grown on collagen gels showed a multilayered growth with formation of nodules. When the edge of the collagen gels was detached from the culture dish, the shape and arrangement of cells on the edge differed from that of the central, still attached region. The cells grown on floating collagen gels exhibited a spindle-like shape and were arranged in concentric circles. These findings suggest that the physical property of the substrate influences the cell shape and arrangement.  相似文献   

13.
14.
Hydrogel fibers that possessed a cell-adhesive surface and were degradable via enzymatic reactions were developed for fabricating tubular constructs with smooth muscle cell (SMC) and endothelial cell (EC) layers, similar to native blood vessels, in collagen gels. The fibers were prepared by soaking hydrogel fibers prepared from a solution of sodium alginate and gelatin containing bovine ECs (BECs) in medium containing oxidized alginate (AO). BECs soaked in 8.0% (w/v) AO showed no reduction in viability within 3 h of soaking. Furthermore, mouse SMCs (MSMCs) adhered and proliferated on the AO-cross-linked hydrogels. Based on these results, we prepared AO-cross-linked hydrogel fibers containing BECs, covered their surface with MSMCs, and embedded them in collagen gels. We then degraded the fibers using alginate lyase to obtain channels in the collagen gels. Histological analysis of the released ECs using a specific fluorescent dye revealed the formation of tubular structures with layered BECs and MSMCs.  相似文献   

15.
Summary The effect of tumor necrosis factor alpha on vascular endothelial cells was analyzed using a collagen-embedded, three-dimensional culture system, focusing on angiogenesis and expression of cell adhesion molecules. When the endothelial cells were cultured between two layers of type-I collagen gel, they reorganized into a network of branching and anastomosing tubular structures. Once the structure was formed, the cells did not undergo further division. Addition of tumor necrosis factor alpha at 10 to 500 U/ml to the overlaid culture medium inhibited this tube-forming process and enhanced their survival, whereas it suppressed cell growth in monolayer. To test its effect on the expression of cell adhesion molecules, the collagen was digested, and the dispersed cells were stained with anti-intercellular adhesion molecule-1 and endothelial-leukocyte adhesion molecule-1 monoclonal antibodies. Tumor necrosis factor alpha upregulated the expressions of both molecules for an extended period of time. Even in the absence of tumor necrosis factor alpha, the cells embedded in collagen matrices expressed small amounts of these adhesion molecules. These results indicate that endothelial cells display phenotypic changes in collagen matrices and modulatory response to tumor necrosis factor alpha.  相似文献   

16.
Elastic fiber production in cardiovascular tissue-equivalents.   总被引:8,自引:0,他引:8  
Elastic fiber incorporation is critical to the success of tissue-engineered arteries and heart valves. Elastic fibers have not yet been observed in tissue-engineered replacements fabricated in vitro with smooth muscle cells. Here, rat smooth muscle cells (SMC) or human dermal fibroblasts (HDF) remodeled collagen or fibrin gels for 4 weeks as the basis for a completely biological cardiovascular tissue replacement. Immunolabeling, alkaline extraction and amino acid analysis identified and quantified elastin. Organized elastic fibers formed when neonatal SMC were cultured in fibrin gel. Fibrillin-1 deposition occurred but elastin was detected in regions without fibrillin-1, indicating that a microfibril template is not required for elastic fiber formation within fibrin. Collagen did not support substantial elastogenesis by SMC. The quantity of crosslinked elastic fibers was enhanced by treatment with TGF-beta1 and insulin, concomitant with increased collagen production. These additives overcame ascorbate's inhibition of elastogenesis in fibrin. The elastic fibers that formed in fibrin treated with TGF-beta1 and insulin contained crosslinks, as evidenced by the presence of desmosine and an altered elastin labeling pattern when beta-aminopropionitrile (BAPN) was added. These findings indicate that in vitro elastogenesis can be achieved in tissue engineering applications, and they suggest a physiologically relevant model system for the study of three-dimensional elastic structures.  相似文献   

17.
Cultured vascular endothelial cells were exposed to fluid shear stress by means of a rotary-disc shear-loading device, and the physiological effects of the conditioned medium (CM) and the homogenate (HM) of the cells on migration, adhesion and growth of endothelial cells (EC) or smooth muscle cells (SMC) were studied. Effects of shear stress on the production and secretion of collagen, one of the extracellular matrices of EC, were also studied. CM stimulated the adhesion and growth of SMC, but not of EC themselves. The ability to stimulate SMC adhesion and growth was similar in CM obtained from the static and shear-loaded cells. HM of the shear-loaded EC stimulated SMC migration. Further, HM of the shear-loaded EC contained increased amounts of collagen compared with the static EC. These results suggest that: 1) EC produce and secrete accelerators for the adhesion and growth of SMC, 2) EC react to the physical stimulus of fluid shear stress to produce stimulators of SMC migration, and 3) EC produce collagen, the production of which is enhanced by fluid shear stress.  相似文献   

18.
In this study, we investigated the effect of the extracellular matrix (ECM) secreted by vascular cells on proteoglycan (PG) synthesis by vascular smooth muscle cells in culture. PG synthesis of human aortic smooth muscle cells plated on plastic or the matrices derived from vascular endothelial cells, vascular smooth muscle cells, or THP-1 macrophages was characterized. Smooth muscle cell and macrophage matrices increased both secreted and cellular smooth muscle cells PG production by 2.5-fold to 3.9-fold, respectively, over plastic and endothelial cell matrix. Macrophage matrix was more potent than smooth muscle cell matrix in this regard. Selective enzymatic removal of chondroitin sulfates, collagen, and elastin from smooth muscle cell matrix enhanced the stimulation of PG synthesis, as did the removal of chondroitin sulfates from macrophage matrix. PG turnover rates were similar for smooth muscle cells plated on the three matrices. The newly synthesized PG from cultures plated on smooth muscle cell-, and macrophage-derived matrices had greater charge density, larger molecular size, and longer glycosaminoglycan chains than those from endothelial cell matrix cultures. These data show that the ECM plays a major role in modulating vascular smooth muscle cell PG metabolism in vitro.  相似文献   

19.
OBJECTIVE AND BACKGROUND: Inflammation plays a critical role in all stages of atherogenesis. Proliferating vascular smooth muscle cells (SMC) and endothelial cells (EC) enhancing the inflammatory response, both contribute to the progression of atherosclerosis. Anti-proliferative, anti-inflammatory and anti-oxidative therapy seems to be a promising therapeutic strategy. The aim of this study was to assess the anti-proliferative and anti-inflammatory effect of the beta-blocker nebivolol in comparison to metoprolol in vitro and to find out whether nebivolol inhibits neointima formation in vivo. METHODS AND RESULTS: Real-time-RT-PCR revealed a decrease in VCAM-1, ICAM-1, PDGF-B, E-selectin and P-selectin mRNA expression in human coronary artery EC and SMC incubated with nebivolol for 72 hours while metoprolol did not have this effect. Nebivolol reduced MCP-1 and PDGF-BB protein in the culture supernatant of SMC and EC, respectively. Sprague-Dawley rats were treated with nebivolol for 0 or 35 days before and 28 days after carotid balloon injury. Immunohistological analyses showed that pre-treatment with nebivolol was associated with a decreased number of SMC layers and macrophages and an increased lumen area at the site of the arterial injury. The intima area was reduced by 43% after pre-treatment. CONCLUSION: We found that nebivolol reduced the expression of proinflammatory genes in endothelial cells and vascular smooth muscle cells in vitro whereas metoprolol did not. In vivo, nebivolol inhibited neointima formation by reducing SMC proliferation and macrophage accumulation.  相似文献   

20.
Shen G  Tsung HC  Wu CF  Liu XY  Wang XY  Liu W  Cui L  Cao YL 《Cell research》2003,13(5):335-342
Endothelial cells (TEC3 cells) derived from mouse embryonic stem (ES) cells were used as seed cells to construct blood vessels. Tissue engineered blood vessels were made by seeding 8 X 106 smooth muscle cells (SMCs) ob-tained from rabbit arteries onto a sheet of nonwoven polyglycolic acid (PGA) fibers, which was used as a biode-gradable polymer scaffold. After being cultured in DMEM medium for 7 days in vitro, SMCs grew well on the PGA fibers, and the cell-PGA sheet was then wrapped around a silicon tube, and implanted subcutaneously into nude mice. After 6~8 weeks, the silicon tube was replaced with another silicon tube in smaller diameter, and then the TEC3 cells (endothelial cells differentiated from mouse ES cells) were injected inside the engineered vessel tube as the test group. In the control group only culture medium was injected. Five days later, the engineered vessels were harvested for gross observation, histological and immunohistochemical analysis. The preliminary results demonstrated that the SMC-PGA construct could form a tubular structure in 6-8 weeks and PGA fibers were completely degraded. Histological and immunohistochemical analysis of the newly formed tissue revealed a typical blood vessel structure, including a lining of endothelial cells (ECs) on the lumimal surface and the presence of SMC and collagen in the wall. No EC lining was found in the tubes of control group. Therefore, the ECs differentiated from mouse ES cells can serve as seed cells for endothelium lining in tissue engineered blood vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号