首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Nugent AP 《Biochimie》2005,87(1):129-132
LIPGENE is a new 5-year sixth framework EU project involving researchers from 14 EU countries. It will contribute to a reduction in the economic and social burden of the metabolic syndrome through research that will optimise the health impacts of dietary fat change. LIPGENE aims to: account for variation in genotype response to fatty acid modification; enable greater availability of food products that can enhance human health; enhance consumer awareness, and motivate adoption of dietary approaches to disease prevention. A truly integrated programme, LIPGENE incorporates human nutrition, animal nutrition, plant biotechnology, and economic and social/consumer sciences. The human nutrition packages will utilise data from an existing prospective study (SUVIMAX) to identify genotype and dietary interactions as risk factors for the metabolic syndrome. A multi-centre intervention will examine the effects of dietary fat on various risk factors for the metabolic syndrome, while molecular investigations will be supported by mechanistic and functional studies. The British Nutrition Foundation, as dissemination partners for this EU programme, is initiating a wide-reaching programme to disseminate information about the project and its findings. Further details, including lists of upcoming project-related events, are available at www.lipgene.tcd.ie and www.nutrition.org.uk/lipgene.  相似文献   

2.
Several metabolites serve as substrates for histone modifications and communicate changes in the metabolic environment to the epigenome. Technologies such as metabolomics and proteomics have allowed us to reconstruct the interactions between metabolic pathways and histones. These technologies have shed light on how nutrient availability can have a dramatic effect on various histone modifications. This metabolism–epigenome cross talk plays a fundamental role in development, immune function, and diseases like cancer. Yet, major challenges remain in understanding the interactions between cellular metabolism and the epigenome. How the levels and fluxes of various metabolites impact epigenetic marks is still unclear. Discussed herein are recent applications and the potential of systems biology methods such as flux tracing and metabolic modeling to address these challenges and to uncover new metabolic–epigenetic interactions. These systems approaches can ultimately help elucidate how nutrients shape the epigenome of microbes and mammalian cells.  相似文献   

3.
《Harmful algae》2009,8(1):167-174
Every year harmful algal blooms (HABs) cause serious impacts to local economies, coastal ecosystems, and human health on a global scale. It is well known that nutrient availability can influence important aspects of harmful algae biology and ecology, such as growth, toxin production, and life cycle stage, as well as bloom initiation, persistence and decline. Increases in the rate of supply of organic matter to ecosystems (eutrophication) carries many possible ramifications to coastal systems, including the potential for nutrient enrichment and the potential for stimulation of harmful algal blooms. Traditional studies on algal nutrition typically use either cultured isolates or community level assays, to examine nutrient uptake, nutrient preference, elemental composition, and other metrics of a species’ response to nutrients. In the last decade, technological advances have led to a great increase in the number of sequences available for critical harmful species. This, in turn, has led to new insights with regards to algal nutrition, and these advances highlight the promise of molecular technologies, and genomic approaches, to improving our understanding of algal nutrient acquisition and nutritional physiological ecology, in both cultures and field populations. With these developments increased monitoring of nutritional physiology in field populations of harmful algae will allow us to better discriminate how eutrophication impacts these groups.  相似文献   

4.
There is increasing evidence indicating that nutritional genomics represents a promise to improve public health. This goal will be reached by highlighting the mechanisms through which diet can reduce the risk of monogenic and common polygenic diseases. Indeed, nutrition is a very relevant environmental factor involved in the development and progression of metabolic disorders, as well as other kind of diseases. The revolutionary changes in the field of genomics have led to the development and implementation of new technologies and molecular tools. These technologies have a useful application in the nutritional sciences, since they allow a more precise and accurate analysis of biochemical alterations, in addition to filling fundamental gaps in the knowledge of nutrient–genome interactions in both health and disease. Overall, these advances will open undiscovered ways in genome-customized diets for disease prevention and therapy. This review summarizes the recent knowledge concerning this novel nutritional approach, paying attention to the human genome variations, such as single-nucleotide polymorphisms and copy number variations, gene expression and innovative molecular tools to reveal them.  相似文献   

5.
Novel omics technologies in nutrition research   总被引:1,自引:0,他引:1  
  相似文献   

6.
Mitigating methane losses from cattle has economic as well as environmental benefits. The aim of this paper is to review the current approaches in relation to associated advantages and disadvantages and future options to reduce enteric methane emission from cattle. Current technologies can be broadly grouped into those that increase productivity of the animal (improved nutrition strategies) so that less methane is produced per unit of meat or milk, and those that directly modify the rumen fermentation so that less methane is produced in total. Data suggest that many of these practices are not appropriate for long term mitigation of methane emissions in ruminants because of their constraints. So it is necessity to develop long term strategies in suppressing methane production. An integrated research investigating animal, plant, microbe and nutrient level strategies would offer a long term solution of methane production. Genetic selection of animals, vaccination, probiotics, prebiotics and plant improvement are the most promising options of all the future approaches discussed. These approaches will reduce enteric methane production without any hazard to animal or environment.  相似文献   

7.
The rhizosphere is a complex environment where roots interact with physical, chemical and biological properties of soil. Structural and functional characteristics of roots contribute to rhizosphere processes and both have significant influence on the capacity of roots to acquire nutrients. Roots also interact extensively with soil microorganisms which further impact on plant nutrition either directly, by influencing nutrient availability and uptake, or indirectly through plant (root) growth promotion. In this paper, features of the rhizosphere that are important for nutrient acquisition from soil are reviewed, with specific emphasis on the characteristics of roots that influence the availability and uptake of phosphorus and nitrogen. The interaction of roots with soil microorganisms, in particular with mycorrhizal fungi and non-symbiotic plant growth promoting rhizobacteria, is also considered in relation to nutrient availability and through the mechanisms that are associated with plant growth promotion.  相似文献   

8.
Previous experiments with a factorial design have revealed the effects of several environmental factors on species performance and their interactions, which indicate synergistic or antagonistic effects. Temperature, nutrient availability, and irradiance are well‐known environmental factors that affect the growth and chemical composition of brown algae. However, relatively few studies have tested their combined effect on brown algal growth and chemical composition using a three‐way factorial design. We conducted a culture experiment to test the combined effects of elevated summer temperatures (23 and 26°C), irradiance (180 and 30 μmol photon m?2 s?1), and nutrient availability (enriched and non‐enriched seawater) on four relative growth rates (RGRs; based on wet weight, blade width, length, and area) and three chemical compositions (including carbon, nitrogen, and phlorotannin content) in juvenile sporophytes of the kelp Eisenia bicyclis. RGR based on blade width was the most sensitive to abiotic factors among all RGRs. A significant interaction between temperature and nutrient availability on this RGR suggested that the negative effect of elevated temperature was antagonized by a reduction in nutrient availability. Similarly, the positive effect of elevated irradiance on carbon content was synergized by reduced nutrient availability. Moreover, the negative effect of increased irradiance on nitrogen content was antagonized by elevated temperature in nutrient‐enriched treatments, but not in non‐enriched treatments. The content of carbon‐based phlorotannins increased with reduced nutrient availability but not with elevated irradiance. These results suggest that these abiotic factors have complex interactions on the growth and chemical composition of this species.  相似文献   

9.
Access to metabolic information in vivo using magnetic resonance (MR) technologies has generally been the niche of MR spectroscopy (MRS) and spectroscopic imaging (MRSI). Metabolic fluxes can be studied using the infusion of substrates labeled with magnetic isotopes, with the use of hyperpolarization especially powerful. Unfortunately, these promising methods are not yet accepted clinically, where fast, simple, and reliable measurement and diagnosis are key. Recent advances in functional MRI and chemical exchange saturation transfer (CEST) MRI allow the use of water imaging to study oxygen metabolism and tissue metabolite levels. These, together with the use of novel data analysis approaches such as machine learning for all of these metabolic MR approaches, are increasing the likelihood of their clinical translation.  相似文献   

10.
Dairy cows are high value farm animals requiring careful management to achieve the best results. Since the advent of robotic and high throughput milking, the traditional few minutes available for individual human attention daily has disappeared and new automated technologies have been applied to improve monitoring of dairy cow production, nutrition, fertility, health and welfare. Cows milked by robots must meet legal requirements to detect healthy milk. This review focuses on emerging technical approaches in those areas of high cost to the farmer (fertility, metabolic disorders, mastitis, lameness and calving). The availability of low cost tri-axial accelerometers and wireless telemetry has allowed accurate models of behaviour to be developed and sometimes combined with rumination activity detected by acoustic sensors to detect oestrus; other measures (milk and skin temperature, electronic noses, milk yield) have been abandoned. In-line biosensors have been developed to detect markers for ovulation, pregnancy, lactose, mastitis and metabolic changes. Wireless telemetry has been applied to develop boluses for monitoring the rumen pH and temperature to detect metabolic disorders. Udder health requires a multisensing approach due to the varying inflammatory responses collectively described as mastitis. Lameness can be detected by walk over weigh cells, but also by various types of video image analysis and speed measurement. Prediction and detection of calving time is an area of active research mostly focused on behavioural change.  相似文献   

11.
It has been suggested that the supermarket of today will be the pharmacy of tomorrow. Such statements have been derived from recognition of our increasing ability to optimize nutrition, and maintain a state of good health through longer periods of life. The new field of nutrigenomics, which focuses on the interaction between bioactive dietary components and the genome, recognizes that current nutritional guidelines may be ideal for only a relatively small proportion of the population. There is good evidence that nutrition has significant influences on the expression of genes, and, likewise, genetic variation can have a significant effect on food intake, metabolic response to food, individual nutrient requirements, food safety, and the efficacy of disease-protective dietary factors. For example, a significant number of human studies in various areas are increasing the evidence for interactions between single nucleotide polymorphisms (SNPs) in various genes and the metabolic response to diet, including the risk of obesity. Many of the same genetic polymorphisms and dietary patterns that influence obesity or cardiovascular disease also affect cancer, since overweight individuals are at increased risk of cancer development. The control of food intake is profoundly affected by polymorphisms either in genes encoding taste receptors or in genes encoding a number of peripheral signaling peptides such as insulin, leptin, ghrelin, cholecystokinin, and corresponding receptors. Total dietary intake, and the satiety value of various foods, will profoundly influence the effects of these genes. Identifying key SNPs that are likely to influence the health of an individual provides an approach to understanding and, ultimately, to optimizing nutrition at the population or individual level. Traditional methods for identification of SNPs may involve consideration of individual variants, using methodologies such as restriction fragment length polymorphisms or quantitative real-time PCR assays. New developments allow identification of up to 500,000 SNPs in an individual, and with increasingly lowered pricings these developments may explode the population-level potential for dietary optimization based on nutrigenomic approaches.  相似文献   

12.
Foetal growth from conception to birth is a complex process predetermined by the genetic configuration of the foetus, the availability of nutrients and oxygen to the foetus, maternal nutrition and various growth factors and hormones of maternal, foetal and placental origin. Maintenance of the optimal foetal environment is the key factor of the future quality of life. Such conditions like inadequate nutrition and oxygen supply, infection, hypertension, gestational diabetes or drug abuse by the mother, expose the foetus to nonphysiological environment. In conditions of severe intrauterine deprivation, there is a potential loss of structural units within the developing organ systems affecting their functionality and efficiency. Extensive human epidemiologic and animal model data indicate that during critical periods of prenatal and postnatal mammalian development, nutrition and other environmental stimuli influence developmental pathways and thereby induce permanent changes in metabolism and chronic disease susceptibility. The studies reviewed in this article show how environmental factors influence a diverse array of molecular mechanisms and consequently alter disease risk including diseases such as metabolic syndrome and cardiovascular diseases, insulin resistance and diabetes mellitus, neuropsychiatric disorders, osteoporosis, asthma and immune system diseases.  相似文献   

13.
The period around the time of conception is one characterised by considerable cytological and molecular restructuring as ovulation occurs, the oocyte is fertilised and the embryonic developmental programme begins. The intrinsic processes regulating peri-conceptional progression are supplemented by environmental factors, which contribute important metabolic information that influences several aspects of the developmental programme. Indeed, there is growing evidence from different mammalian animal models, reviewed here, that the peri-conceptional environment mediated through maternal nutrition can modify development throughout gestation and affect the physiological and metabolic health of adult offspring. The concept that adult disease risk may owe its origin to the quality of peri-conceptional maternal nutrition is one, which merits further research for mechanistic understanding and devising preventive strategies.  相似文献   

14.
A great deal of information is available in the literature on the effects of nutrition on disease development in plants and crops. However, much of this information is contradictory and although it is widely recognised that nutrition can influence disease in crops, limited progress has been made in the manipulation of crop nutrition to enhance disease control. Achieving this aim requires a sound understanding of the effects of fertilisation on nutrient levels and availability in crop tissues, and in turn, how the nutrient status of such tissues influences pathogen infection, colonisation and sporulation. Some of these details are known for a number of crop plants under controlled conditions, but very little of this type of information is available for crops under field conditions. This review focuses on nitrogen, sulphur, phosphorus, potassium and silicon, examines the availability of these nutrients in plant tissues to support pathogen growth and development, and reviews the effects of the different nutrients on disease development. The review also examines the potential for manipulating crop nutrition to enhance disease control in conventional and organic cropping systems.  相似文献   

15.
Nutritional programming of adult disease   总被引:1,自引:0,他引:1  
Intrauterine and early neonatal life is a period of physiological plasticity, during which environmental influences may produce long-term effects. Both undernutrition and overnutrition during this period have been shown to change disease risk in adulthood. These effects are influenced by the type, timing and duration of inappropriate nutrition and by the previous nutritional environment and may not be reflected in changes in body size. An understanding of the interaction between nutrient imbalance and alteration of gene expression is likely to be the key to optimising future health outcomes.  相似文献   

16.
A holistic view of nitrogen acquisition in plants   总被引:1,自引:0,他引:1  
Nitrogen (N) is the mineral nutrient required in the greatest amount and its availability is a major factor limiting growth and development of plants. As sessile organisms, plants have evolved different strategies to adapt to changes in the availability and distribution of N in soils. These strategies include mechanisms that act at different levels of biological organization from the molecular to the ecosystem level. At the molecular level, plants can adjust their capacity to acquire different forms of N in a range of concentrations by modulating the expression and function of genes in different N uptake systems. Modulation of plant growth and development, most notably changes in the root system architecture, can also greatly impact plant N acquisition in the soil. At the organism and ecosystem levels, plants establish associations with diverse microorganisms to ensure adequate nutrition and N supply. These different adaptive mechanisms have been traditionally discussed separately in the literature. To understand plant N nutrition in the environment, an integrated view of all pathways contributing to plant N acquisition is required. Towards this goal, in this review the different mechanisms that plants utilize to maintain an adequate N supply are summarized and integrated.  相似文献   

17.
Nutrition is the cornerstone of health; survival depends on acquiring essential nutrients, and dietary components can both prevent and promote disease. Metabolomics, the study of all small molecule metabolic products in a system, has been shown to provide a detailed snapshot of the body's processes at any particular point in time, opening up the possibility of monitoring health and disease, prevention and treatment. Metabolomics has the potential to fundamentally change clinical chemistry and, by extension, the fields of nutrition, toxicology and medicine. Technological advances, combined with new knowledge of the human genome and gut microbiome, have made and will continue to make possible earlier, more accurate, less invasive diagnoses, all while enhancing our understanding of the root causes of disease and leading to a generation of dietary recommendations that enable optimal health. This article reviews the recent contributions of metabolomics to the fields of nutrition, toxicology and medicine. It is expected that these fields will eventually blend together through development of new technologies in metabolomics and genomics into a new area of clinical chemistry: personalized medicine.  相似文献   

18.
Plants release a multitude of organic compounds into the rhizosphere, some of which are flavonoids. These products of secondary metabolism are mainly studied for their antioxidant properties and for their role in the establishment of rhizobium-legume symbiosis; however, it has been recently demonstrated that flavonoids can also affect nutrient availability through soil chemical changes. This review will give an overview of the types and amounts of flavonoids released by roots of different plant species, as well as summarize the available knowledge on root exudation mechanisms. Subsequently, factors influencing their release will be reported, and the methodological approaches used in the literature will be critically described. Finally, the direct contribution of plant-borne flavonoids on the nitrogen, phosphorous and iron availability into the rhizosphere will be discussed.  相似文献   

19.
OMICS-driven biomarker discovery in nutrition and health   总被引:10,自引:0,他引:10  
  相似文献   

20.
Although theoretical systems analysis has been available for over half a century, the recent advent of omic high-throughput analytical platforms along with the integration of individual tools and technologies has given rise to the field of modern systems biology. Coupled with information technology, bioinformatics, knowledge management and powerful mathematical models, systems biology has opened up new vistas in our understanding of complex biological systems. Currently there are two distinct approaches that include the inductively driven computational systems biology (bottom-up approach) and the deductive data-driven top-down analysis. Such approaches offer enormous potential in the elucidation of disease as well as defining key pathways and networks involved in optimal human health and nutrition. The tools and technologies now available in systems biology analyses offer exciting opportunities to develop the emerging areas of personalized medicine and individual nutritional profiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号