首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Harmful algae》2009,8(1):77-93
Historically most harmful algal species (HAS) have been thought to be strictly phototrophic. Mixotrophy, the use of phototrophy and heterotrophy in combination, has been emphasized as operative mainly in nutrient-poor habitats as a mechanism for augmenting nutrient supplies. Here we examine an alternate premise, that many harmful algae which thrive in eutrophic habitats are mixotrophs that respond both directly to nutrient inputs, and indirectly through high abundance of bacterial and algal prey that are stimulated by the elevated nutrients. From review and synthesis of the available data, mixotrophy occurs in all HAS examined thus far in the organic substrate- and prey-rich habitats of eutrophic estuarine and marine coastal waters. Where data are available comparing phototrophy versus mixotrophy, mixotrophy in eutrophic habitats generally is significant in nutrient acquisition and growth of HAS and, therefore, likely important in the development and maintenance of their blooms. In eutrophic habitats phagotrophic mixotrophs, in particular, have been shown to attain higher growth than when in phototrophic mode. Yet for many HAS, quantitative data about the role of mixotrophy in nutrition, growth, and blooms are lacking, especially relating laboratory information to natural field assemblages, so that the relative importance of photosynthesis, dissolved organic nutrients, and ingestion of prey largely remain unknown. Research is needed to assess simultaneously the roles of phototrophy, osmotrophy and phagotrophy in the nutritional ecology of HAS in eutrophic habitats, spanning bloom initiation, development and senescence. From these data, models that include the role of mixotrophy can be developed to gain more realistic insights about the nutritional factors that control harmful algae in eutrophic waters, and to strengthen predictive capability in predicting their blooms. An overall forecast that can be tested, as well, is that harmful mixotrophic algae will become more abundant as their food supplies increase in many estuaries and coastal waters that are sustaining chronic, increasing cultural eutrophication.  相似文献   

2.
Harmful algal blooms: causes,impacts and detection   总被引:9,自引:0,他引:9  
Blooms of autotrophic algae and some heterotrophic protists are increasingly frequent in coastal waters around the world and are collectively grouped as harmful algal blooms (HABs). Blooms of these organisms are attributed to two primary factors: natural processes such as circulation, upwelling relaxation, and river flow; and, anthropogenic loadings leading to eutrophication. Unfortunately, the latter is commonly assumed to be the primary cause of all blooms, which is not the case in many instances. Moreover, although it is generally acknowledged that occurrences of these phenomena are increasing throughout the world's oceans, the reasons for this apparent increase remain debated and include not only eutrophication but increased observation efforts in coastal zones of the world. There is a rapidly advancing monitoring effort resulting from the perception of increased impacts from these HABs, manifested as expanding routine coastal monitoring programs, rapid development and deployment of new detection methods for individual species, toxins, and toxicities, and expansion of coastal modeling activities towards observational forecasts of bloom landfall and eventually bloom prediction. Together, these many efforts will provide resource managers with the tools needed to develop effective strategies for the management and mitigation of HABs and their frequently devastating impacts on the coastal environment.  相似文献   

3.
Harmful algal blooms (HABs) have occurred with increasing frequency in recent years with eutrophication and other anthropogenic alterations of coastal ecosystems. Many of these blooms severely alter or degrade ecosystem function, and are referred to here as ecosystem disruptive algal blooms (EDABs). These blooms are often caused by toxic or unpalatable species that decrease grazing rates by planktonic and benthic herbivores, and thereby disrupt the transfer of nutrients and energy to higher trophic levels, and decrease nutrient recycling. Many factors, such as nutrient availability and herbivore grazing have been proposed to separately influence EDAB dynamics, but interactions among these factors have rarely been considered. Here we discuss positive feedback interactions among nutrient availability, herbivore grazing, and nutrient regeneration, which have the potential to substantially influence the dynamics of EDAB events. The positive feedbacks result from a reduction of grazing rates on EDAB species caused by toxicity or unpalatability of these algae, which promotes the proliferation of the EDAB species. The decreased rates also lower grazer‐mediated recycling of nutrients and thereby decrease nutrient availability. Since many EDAB species are well‐adapted to nutrient‐stressed environments and many exhibit increased toxin production and toxicity under nutrient limitation, positive feedbacks are established which can greatly increase the rate of bloom development and the adverse effects on the ecosystem. An understanding of how these feedbacks interact with other regulating factors, such as benthic/pelagic nutrient coupling, physical forcing, and life cycles of EDAB species provides a substantial future challenge.  相似文献   

4.
Anthropogenic nutrient enrichment of the coastal zone is now a well-established fact. However, there is still uncertainty about the mechanisms through which nutrient enrichment can disrupt biological communities and ecosystem processes in the coastal zone. For example, while some estuaries exhibit classic symptoms of acute eutrophication, including enhanced production of algal biomass, other nutrient-rich estuaries maintain low algal biomass and primary production. This implies that large differences exist among coastal ecosystems in the rates and patterns of nutrient assimilation and cycling. Part of this variability comes from differences among ecosystems in the other resource that can limit algal growth and production – the light energy required for photosynthesis. Complete understanding of the eutrophication process requires consideration of the interacting effects of light and nutrients, including the role of light availability as a regulator of the expression of eutrophication. A simple index of the relative strength of light and nutrient limitation of algal growth can be derived from models that describe growth rate as a function of these resources. This index can then be used as one diagnostic to classify the sensitivity of coastal ecosystems to the harmful effects of eutrophication. Here I illustrate the application of this diagnostic with light and nutrient measurements made in three California estuaries and two Dutch estuaries.  相似文献   

5.
《Harmful algae》2005,4(3):449-470
Prorocentrum minimum (Pavillard) Schiller, a common, neritic, bloom-forming dinoflagellate, is the cause of harmful blooms in many estuarine and coastal environments. Among harmful algal bloom species, P. minimum is important for the following reasons: it is widely distributed geographically in temperate and subtropical waters; it is potentially harmful to humans via shellfish poisoning; it has detrimental effects at both the organismal and environmental levels; blooms appear to be undergoing a geographical expansion over the past several decades; and, a relationship appears to exist between blooms of this species and increasing coastal eutrophication. Although shellfish toxicity with associated human impacts has been attributed to P. minimum blooms from a variety of coastal environments (Japan; France; Norway; Netherlands; New York, USA), only clones isolated from the Mediterranean coast of France, and shellfish exposed to P. minimum blooms in this area, have been shown to contain a water soluble neurotoxic component which killed mice. Detrimental ecosystem effects associated with blooms range from fish and zoobenthic mortalities to shellfish aquaculture mortalities, attributable to both indirect biomass effects (e.g., low dissolved oxygen) and toxic effects. P. minimum blooms generally occur under conditions of high temperatures and incident irradiances and low to moderate salinities in coastal and estuarine environments often characterized as eutrophic, although they have been found under widely varying salinities and temperatures if other factors are conducive for growth. The physiological flexibility of P. minimum in response to changing environmental parameters (e.g., light, temperature, salinity) as well as its ability to utilize both inorganic and organic nitrogen, phosphorus, and carbon nutrient sources, suggest that increasing blooms of this species are a response to increasing coastal eutrophication.  相似文献   

6.
《Harmful algae》2009,8(1):94-102
The ability of certain harmful algal species to produce and release chemicals that inhibit the growth of co-occurring phytoplankton species, here considered as allelopathy, is closely associated with competition for limiting nutrient resources. Many phytoplankton cells are known to release elevated amounts of organic compounds under nutrient limitation. Eutrophication alters the nitrogen-to-phosphorus balance and, when nutrient availability is unbalanced, nutrient limitation may result. Algal species that can compete successfully for available growth-limiting nutrient(s) have the potential to become dominant and form blooms. The stress conditions imposed by the shifted nutrient supply ratios can, in some algae, stimulate production of allelochemicals that inhibit potential competitors. Thus, under cultural eutrophication, altered nutrient (N, P) ratios and limiting nutrient supplies can stimulate increased production of allelochemicals, including toxins, by some algal species and accentuate the adverse effects of these substances on other algae. Future investigation on the characterization of the chemical compounds involved in the allelopathic process are needed to advance the study of the mode of action of phytoplankton allelochemicals.  相似文献   

7.
Estuaries are among the most productive, resourceful, and dynamic aquatic ecosystems on Earth. Their productive nature is linked to the fact that they process much of the world's riverine and coastal watershed discharge. These watersheds support more than 75% of the human population and are sites of large increases in nutrient loading associated with urban and agricultural expansion. Increased nutrient loading has led to accelerated primary production, or eutrophication; symptoms include increased algal bloom activity (including harmful taxa), accumulation of organic matter, and excessive oxygen consumption (hypoxia and anoxia). While nutrient-enhanced eutrophication is a “driver” of hypoxia and anoxia, physical–chemical alterations due to climatic events, such as stormwater discharge, flooding, droughts, stagnancy, and elevated temperatures are also involved. The complex interactions of anthropogenic and climatic factors determine the magnitude, duration, and aerial extent of productivity, algal booms, hypoxia, and anoxia. Using the eutrophic Neuse River Estuary (NRE), North Carolina, USA, as a case study, the physical–chemical mechanisms controlling algal bloom and hypoxia dynamics were examined. Because primary production in the NRE and many other estuaries is largely nitrogen (N) limited, emphasis has been placed on reducing N inputs. Both the amounts and chemical forms of N play roles in determining the composition and extent of phytoplankton blooms that supply the bulk of the organic carbon fueling hypoxia. Biomass from bloom organisms that are readily grazed will be readily transferred up the planktonic and benthic food chain, while toxic or inedible blooms frequently promote sedimentary C flux, microbial mineralization, and hence may exacerbate hypoxia potential. From a watershed perspective, nutrient input reductions are the main options for reducing eutrophication. Being able to distinguish the individual and cumulative effects of physical, chemical and biotic controls of phytoplankton productivity and composition is key to understanding, predicting, and ultimately managing eutrophication. Long-term collaborative (University, State, Federal) monitoring, experimental assessments, and modeling of eutrophication dynamics over appropriate spatial and temporal scales is essential for developing realistic, ecologically sound, and cost-effective nutrient management strategies for estuarine and coastal ecosystems impacted by both anthropogenic and climatic perturbations.  相似文献   

8.
Summary

World-wide, our coastal waters have been subject to an increased nutrient input since the latter part of the nineteenth century. This has led to the eutrophication or ‘nutrient pollution’ of many coastal sites, including Langstone Harbour and the Ythan Estuary here in the UK. Eutrophication at these and, indeed, at other nutrient enriched sites is evident by the appearance of large blooms of fast-growing opportunistic macroalgae. Blooms of macroscopic species of green algae (Chlorophyta: Ulvophyceae) are particularly common and the phenomenon is often referred to as the occurrence of green tides.

Green tides may have a dramatic environmental impact, causing much damage to the local ecosystem. Numerous strategies have hence been employed in order to combat the problem, but to date there has been limited success. For this reason, current research in the UK is aimed at increasing our knowledge of green tide algae in terms of their ecophysiology, whilst further investigation of the nutrient pathways and fluxes within specific ecosystems has been deemed necessary. It is anticipated that this ‘backto basics’ approach will ultimately contribute to the development of new, successful eutrophication management strategies.  相似文献   

9.
滨海湿地生态系统微生物驱动的氮循环研究进展   总被引:5,自引:0,他引:5  
滨海湿地生态系统介于陆地生态系统和海洋生态系统之间,其类型多种多样,环境差异极大,微生物种类丰富。近年来,随着人为氮源的大量输入,造成滨海湿地生态系统富营养化污染问题日趋严重。本文主要总结了滨海湿地生态系统微生物驱动的固氮、硝化、反硝化、厌氧氨氧化、NO_3~-还原成铵等主要氮循环过程,并综述了通过功能基因(如nifH、amoA、hzo、nirS、nirK、nrfA)检测微生物群落多样性及其环境影响因素的相关研究,旨在更好理解微生物驱动氮循环过程以去除氮,以期为减轻富营养化和危害性藻类爆发提供科学依据。  相似文献   

10.
沿岸海域富营养化与赤潮发生的关系   总被引:10,自引:0,他引:10  
徐宁  段舜山  李爱芬  刘振乾 《生态学报》2005,25(7):1782-1787
综述了赤潮的发生与沿岸海域富营养化的关系。近几十年来,人类活动使得天然水体的富营养化进程大大加速。营养负荷的增加与高生物量水华的增多相联系。控制营养输入后,浮游植物生物量或有害藻类水华事件也相应减少。营养的组成与浮游植物的种类组成及水华的形成有密切联系。有机营养对有害藻类水华的促进作用受到关注。营养输入时机影响浮游植物种间竞争的结果,因而对浮游植物的群落演替具有深远影响。由于浮游植物存在生理差异,因而对营养加富的反应因种而异。营养在调控某些有毒藻类的毒素产量方面也发挥着重要作用。此外,营养输入与藻类水华之间存在复杂的间接联系。当然,营养状况并非浮游植物群落演替的唯一决定因素。研究结果提示,控制营养输入、减缓水域富营养化是减少有害藻类水华发生的有效途径,而深入研究典型有害藻类的营养生理对策则为防治并最终消除有害藻类水华提供了理论基础。  相似文献   

11.
The taxonomic structure of phytoplankton populations in two Mediterranean coastal lagoons were compared with those of nearby marine waters (external waters). Mediterranean confined lagoons remain isolated for most the year and concentrate phytoplankton to a very high biomass. Coastal lagoons on the Mediterranean may, therefore, act as accumulators of neritic phytoplankton (including species related to harmful algal blooms). We examined whether coastal lagoons act as concentrators of marine toxic dinoflagellates during confinement periods, and the common environmental factors that favour growth of specific harmful species in the two ecosystems considered: coastal lagoons and external waters. An alternation between the dominance of diatoms and dinoflagellates was observed, coinciding with that described in Margalef's mandala, occurring in external waters as well as in coastal lagoons. Moreover, the temporal patter was different in the two ecosystems. Dinoflagellate species composition and their bloom period were highly variable in time and space, thus, species had to be analysed individually. Most of the dinoflagellate species found in this study were potentially harmful and high biomass producers. Harmful dinoflagellate species performed well in both, external waters and lagoons, but the specific species-dependent affinity to each of these environments determined which organisms bloom there. Thus, expansion of harmful algal blooms (HAB) to inland waters is not likely and some environmental factors such as the oxidised state of available nitrogen, became determinant to the success and bloom of a species in the coastal lagoon ecosystem.  相似文献   

12.
《Harmful algae》2009,8(1):103-110
Cultural eutrophication is frequently invoked as one factor in the global increase in harmful algal blooms, but is difficult to definitively prove due to the myriad of factors influencing coastal phytoplankton bloom development. To assess whether eutrophication could be a factor in the development of harmful algal blooms in California (USA), we review the ecophysiological potential for urea uptake by Pseudo-nitzschia australis (Bacillariophyceae), Heterosigma akashiwo (Raphidophyceae), and Lingulodinium polyedrum (Dinophyceae), all of which have been found at bloom concentrations and/or exhibited noxious effects in recent years in California coastal waters. We include new measurements from a large (Chlorophyll a > 500 mg m−3) red tide event dominated by Akashiwo sanguinea (Dinophyceae) in Monterey Bay, CA during September 2006. All of these phytoplankton are capable of using nitrate, ammonium, and urea, although their preference for these nitrogenous substrates varies. Using published data and recent coastal time series measurements conducted in Monterey Bay and San Francisco Bay, CA, we show that urea, presumably from coastal eutrophication, was present in California waters at measurable concentrations during past harmful algal bloom events. Based on these observations, we suggest that urea uptake could potentially sustain these harmful algae, and that urea, which is seldom measured as part of coastal monitoring programs, may be associated with these harmful algal events in California.  相似文献   

13.
Seaweed responses to eutrophication and their role in coastal eutrophication processes were compared at 8 different sites along the European coasts from the Baltic to the Mediterranean as part of the EU-ENVIRONMENT Project Marine Eutrophication and benthic Macrophytes (EUMAC). Structural and functional changes of marine benthic vegetation typical of eutrophic waters, in particular mass development (blooms) of certain seaweeds, are not merely the result of increased nutrient loading, but must be attributed to complex interactions of primary and secondary effects during the eutrophication process. Due to species-specific physiological properties of the algae (nutrient kinetics, growth potential, light, temperature requirements), the combined effects of abiotic and biotic factors on juvenile or adult developmental stages control the development of algal blooms in different ways. In particular the role of light, temperature, water motion and oxygen depletion, as well as of grazers, on early and adult developmental stages of the algae are considered. The result are discussed in the context of coastal eutrophication control and management. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
《Harmful algae》2009,8(1):152-157
Population dynamics of harmful algal bloom species are regulated both from the “bottom-up” by factors that affect their growth rate and from the “top-down” by factors that affect their loss rates. While it might seem apparent that eutrophication would have the greatest impact on factors affecting growth rates of phytoplankton (nutrient supply, light availability) the roles of top-down controls, including grazers and pathogens, cannot be ignored in studies of harmful bloom dynamics. Lags between the growth of phytoplankton and zooplankton populations, or disruption of zooplankton populations by adverse environmental conditions may be important factors in the initiation of plankton blooms under eutrophic conditions. Grazers that avoid feeding on harmful species and actively graze on competing species may also play important roles in bloom initiation. Grazers that are not affected by phytoplankton toxins and have growth rates comparable to phytoplankton (e.g. protozoan grazers) may have the potential to control the initiation of blooms. If the inhibition of grazers varies with cell density for blooms of toxic phytoplankton, eutrophication may increase the chances of blooms reaching threshold densities for grazer inhibition. In addition, secondary effects of eutrophication, including hypoxia and change in pH may adversely affect grazer populations, and further release HAB species from top-down control. The Texas brown tide (Aureoumbra lagunensis) blooms provide evidence for the role of grazer disruption in bloom initiation and the importance of high densities of brown tide cells in continued suppression of grazers.  相似文献   

15.
Harmful algal blooms that disrupt and degrade ecosystems (ecosystem disruptive algal blooms, EDABs) are occurring with greater frequency and severity with eutrophication and other adverse anthropogenic alterations of coastal systems. EDAB events have been hypothesized to be caused by positive feedback interactions involving differential growth of competing algal species, low grazing mortality rates on EDAB species, and resulting decreases in nutrient inputs from grazer-mediated nutrient cycling as the EDAB event progresses. Here we develop a stoichiometric nutrient–phytoplankton–zooplankton (NPZ) model to test a conceptual positive feedback mechanism linked to increased cell toxicity and resultant decreases in grazing mortality rates in EDAB species under nutrient limitation of growth rate. As our model EDAB alga, we chose the slow-growing, toxic dinoflagellate Karenia brevis, whose toxin levels have been shown to increase with nutrient (nitrogen) limitation of specific growth rate. This species was competed with two high-nutrient adapted, faster-growing diatoms (Thalassiosira pseudonana and Thalassiosira weissflogii) using recently published data for relationships among nutrient (ammonium) concentration, carbon normalized ammonium uptake rates, cellular nitrogen:carbon (N:C) ratios, and specific growth rate. The model results support the proposed positive feedback mechanism for EDAB formation and toxicity. In all cases the toxic bloom was preceded by one or more pre-blooms of fast-growing diatoms, which drew dissolved nutrients to low growth rate-limiting levels, and stimulated the population growth of zooplankton grazers. Low specific grazing rates on the toxic, nutrient-limited EDAB species then promoted the population growth of this species, which further decreased grazing rates, grazing-linked nutrient recycling, nutrient concentrations, and algal specific growth rates. The nutrient limitation of growth rate further increased toxin concentrations in the EDAB algae, which further decreased grazing-linked nutrient recycling rates and nutrient concentrations, and caused an even greater nutrient limitation of growth rate and even higher toxin levels in the EDAB algae. This chain of interactions represented a positive feedback that resulted in the formation of a high-biomass toxic bloom, with low, nutrient-limited specific growth rates and associated high cellular C:N and toxin:C ratios. Together the elevated C:N and toxin:C ratios in the EDAB algae resulted in very high bloom toxicity. The positive feedbacks and resulting bloom formation and toxicity were increased by long water residence times, which increased the relative importance of grazing-linked nutrient recycling to the overall supply of limiting nutrient (N).  相似文献   

16.
《Trends in biotechnology》2023,41(7):860-874
Ocean health is faltering, its capability for regeneration and renewal being eroded by a steady pulse of anthropomorphic impacts. Plastic waste has infiltrated all ocean biomes, climate change threatens coral reefs with extinction, and eutrophication has unleashed vast algal blooms. In the face of these challenges, synthetic biology approaches may hold untapped solutions to mitigate adverse effects, repair ecosystems, and put us on a path towards sustainable stewardship of our planet. Leveraging synthetic biology tools would enable innovative engineering approaches to augment the natural adaptive capacity of ocean biological systems to cope with the swiftness of human-induced change. Here, we present a framework for developing synthetic biology solutions for the challenges of plastic pollution, coral bleaching, and harmful algal blooms.  相似文献   

17.
Receiving coastal waters and estuaries are among the most nutrient‐enriched environments on earth, and one of the symptoms of the resulting eutrophication is the proliferation of opportunistic, fast‐growing marine seaweeds. Here, we used a widespread macroalga often involved in blooms, Ulva spp., to investigate how supply of nitrogen (N) and phosphorus (P), the two main potential growth‐limiting nutrients, influence macroalgal growth in temperate and tropical coastal waters ranging from low‐ to high‐nutrient supplies. We carried out N and P enrichment field experiments on Ulva spp. in seven coastal systems, with one of these systems represented by three different subestuaries, for a total of nine sites. We showed that rate of growth of Ulva spp. was directly correlated to annual dissolved inorganic nitrogen (DIN) concentrations, where growth increased with increasing DIN concentration. Internal N pools of macroalgal fronds were also linked to increased DIN supply, and algal growth rates were tightly coupled to these internal N pools. The increases in DIN appeared to be related to greater inputs of wastewater to these coastal waters as indicated by high δ15N signatures of the algae as DIN increased. N and P enrichment experiments showed that rate of macroalgal growth was controlled by supply of DIN where ambient DIN concentrations were low, and by P where DIN concentrations were higher, regardless of latitude or geographic setting. These results suggest that understanding the basis for macroalgal blooms, and management of these harmful phenomena, will require information as to nutrient sources, and actions to reduce supply of N and P in coastal waters concerned.  相似文献   

18.
《Harmful algae》2003,2(1):1-17
From the late Pliocene to now, blooms of toxic algae are associated with mortalities of marine birds. Given the long historical presence of harmful algal blooms (HABs) worldwide and the numbers of seabirds that feed on filter-feeding fish and shellfish, it is surprising that relatively few incidents of seabird deaths as a result of toxic algae have been reported. The limited information available tends to come from major events, whereas the rare events are missed and hence not reported. Much is anecdotal and still more probably is not published. We suspect that factors working in concert may lead to deaths and wrecks that might not occur as a result of anyone factor working independently, e.g. starvation tends to render birds more vulnerable to stress.“Seabird wrecks”, very much larger than usual concentration of seabird corpses washed ashore over a short period of time, often provide evidence of deleterious conditions in offshore populations, e.g. weather, food, pollution, fishing activities, and parasites. It is noted in the literature that wrecks caused by natural toxins such as botulism and algal toxins are apparently less common; however, this perception may be due to a combination of factors including the bird species involved, size of populations, location, and chance of discovery. Wrecks involving near-shore species probably provide a more accurate estimate of total mortality for any given event than offshore species.A survey of available data on the impacts of toxic algae on seabirds revealed an array of responses ranging from reduced feeding activity, inability to lay eggs, and loss of motor coordination to death. Severe impacts on recruitment have been noted in some populations. There are few experimental studies; however, evidence has been provided for the ability of some species to ‘learn’ to avoid toxic food sources. We present a summary of available data on seabird/toxic algal interactions and suggestions of how impacts on seabirds during future blooms of harmful algae be recorded.  相似文献   

19.
Australian science has made rapid advances in the last decade in understanding eutrophication processes in inland waters and estuaries. The freshwater research on which these advances are based was triggered by well-publicised blooms of cyanobacteria during the 1980s and early 1990s, particularly a 1000 km long bloom on the Darling River. In estuaries the study which greatly enhanced our understanding but simultaneously served to stimulate further research into estuarine eutrophication, the Port Phillip Bay Study, was initially designed to address perceived problems of toxicants in the Bay but provided profound insights into drivers for, and ecosystem responses to, eutrophication. Subsequent estuarine research has largely been stimulated by management questions arising from Australia’s increasing coastal development for residential purposes. The research has shown that some of the beliefs extant at the time of the blooms were incorrect. For example, it is now clear that stratification and light penetration, not nutrient availability, are the triggers for blooms in the impounded rivers of southeastern Australia, although nutrient exhaustion limits the biomass of blooms. Again, nitrogen seems to play as important a role as phosphorus does in controlling the biomass of these freshwater blooms. The research has also shown that aspects of eutrophication, such as nutrient transport, are dominated by different processes in different parts of Australia. Many of the biophysical processes involved in eutrophication have now been quantified sufficiently for models to be developed of such processes as sediment-nutrient release, stratification, turbidity and algal growth in both freshwater and estuarine systems. In some cases the models are reliable enough for the knowledge gained in particular waterbodies to be applied elsewhere. Thus, there is now a firm scientific foundation for managers to rely upon when managing algal blooms. Whilst these findings have already been presented to managers and communities throughout Australia, there is still a considerable way to go before they are absorbed into their modus operandi.  相似文献   

20.
Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programmes. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulphide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta‐analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and economic costs, macroalgal blooms have ecological effects that may alter their capacity to deliver important ecosystem services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号