首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
为探讨金属离子对高等植物非按期DNA合成(UnscheduledDNASythesis,简称UDS)和微核(MCN)的诱导作用、二者之间的关联性以及利用高等植物UDS技术检测环境诱变物的可行性,利用3HTdR前体掺入法研究了Cd2+、Al3+作用下蚕豆的UDS效应。结果表明,Cd2+、Al3+均能不同程度地诱导蚕豆UDS和MCN的发生;UDS量与微核率(MCNF)之间呈负相关(r<0),但相关不显着(|r|0.05),且二者间的相关程度在Cd2+和Al3+两种金属离子作用下没有显着差别(P>0.05);利用高等植物UDS技术检测环境诱变物质,在一定受检物剂量范围内是可靠的,但超过这个剂量范围,UDS技术无法检出.  相似文献   

2.
(Na+/K+)-ATPase研究概况   总被引:7,自引:0,他引:7  
本文概述(Na+/K+)-ATPase的一般分子性质。介绍神经元和脂肪细胞中两种不同分子形式(Na+/K+)-ATPase的分离鉴定和功能性质,以及(Na+/K+)-ATPase主要功能亚基一级序列和高级结构研究所取得的一些进展。  相似文献   

3.
Na+H+逆向转运蛋白对植物耐盐起着重要作用 ,它利用质膜H+ATPase或液泡膜H+ATPase及Ppiase泵H+产生的驱动力把Na+排出细胞或在液泡中区隔化以消除Na+的毒害。主要讨论植物中Na+H+逆向转运蛋白研究在分子水平的最新进展.  相似文献   

4.
KcsA 通道对Na+、K+及Rb+离子选择性的统计热力学研究   总被引:2,自引:0,他引:2       下载免费PDF全文
钾离子的通透率至少比钠离子的通透率大10000倍,这个问题至今没有很好地解决.为了在分子水平阐释钾离子通道的选择性机制,以KcsA钾通道X射线衍射结构为基础,采用密度泛函理论计算了不同离子在离子通道中的位能.计算结果表明,Rb+离子具有与K+离子相类似的位能曲线,但是其在通透过程遇到的位垒要比K+离子的位垒高,因而所对应的通透率也就小于钾离子的通透率,而钠离子的的通透率仅仅是钾离子通透率的0.0067%.文中所涉及的系统仅仅包含269个原子,而用分子动力学虽然也可以得到相近的结果,但是它的系统大小为41 000个原子.  相似文献   

5.
采用RT-PCR、RACE方法从超旱生、耐盐植物梭梭中扩增出Na+/H+逆向转运蛋白基因的开放阅读框架,其核苷酸序列长1 683bp,推测的氨基酸序列全长为560个氨基酸残基。含有多个物种Na+/H+逆向转运蛋白基因的高度保守序列氨氯砒嗪脒的结合位点(LFFIYLIPPI)。序列一致性分析结果显示,该cDNA片段与同科植物NHX基因的一致性为70%~80%,但与不同科植物的一致性较低,仅为60%,表明该基因在进化上存在多样性,但它们都具有氨氯砒嗪脒结合位点,对Na+具有高度专一性,对植物的耐盐性起着重要作用。  相似文献   

6.
A cotransport system for Na+, K+ and Cl? in Ehrlich cells is described. It is insensitive towards ouabain but specifically inhibited by furosemide and other ‘high ceiling’ diuretics at concentrations which do not affect other pathways of the ions concerned. As the furosemide-sensitive fluxes of these ions are not affected by changes in membrane potential, and as their complete inhibition by furosemide does not appreciably alter the membrane potential, they appear to be electrically silent. Application of the pulse-response methods in terms of irreversible thermodynamics reveals tight coupling between the furosemide-sensitive flows of Na+, K+ and Cl? (q close to unity for all three combinations) at a stoichiometry of 1 : 1 : 2. The site for each of the ions appears to be rather specific: K+ can be replaced by Rb+ but not by other cations tested whereas Cl? can be poorly replaced by Br? but not by NO3?, in contradistinction to the Cl?-OH? exchange system. The cotransport system appears to function in cell volume regulation as it tends to make the cell swell, thus counteracting the shrinking effect of the ouabain-sensitive (Na+, K+) pump.The experiments presented could not clarify whether the cotransport process is a primary or secondary active one; while incongruence between transport and conjugated driving force seems to indicate primary active transport, it is very unlikely that hydrolysis of ATP supplies energy for the transport process, since there is no stimulation of ATP turnover observable under operation of the cotransport system.  相似文献   

7.
Pb2+、Cd2+和Ce3+对猪胰α-淀粉酶活性的影响   总被引:2,自引:0,他引:2  
分别研究了Pb2+、Cd2+和Ce3+对Ca(Ⅱ) α-淀粉酶活性影响及对其Ca2+的竞争作用.结果表明三种金属离子低浓度情况下(0.5~5 mmol/L)对α-淀粉酶具有激活现象,而较高浓度则抑制酶活力.Pb2+、Cd2+和Ce3+竞争置换α-淀粉酶中Ca2+能力的大小是:Pb2+>Cd2+>Ce3+,其抑制酶活作用大小:Pb2+>Cd2+>Ce3+.  相似文献   

8.
川楝素是我国学者从驱蛔中药中分离、鉴定的一个三萜化合物,已证明具选择地影响神经递质释放,有效地对抗肉毒中毒,促进细胞分化、凋亡,抑制肿瘤增殖,抑制昆虫发育和取食,影响K+、Ca2+通道活动等多种生物效应. 综述了证明川楝素抑制多种K+通道,选择地易化L型Ca2+通道和进而升高胞内Ca+浓度的研究资料,并对川楝素产生这些生物效应的机制进行了讨论.  相似文献   

9.
Fe2+、Cu2+、Zn2+对植物生理特性影响的比较分析   总被引:1,自引:0,他引:1       下载免费PDF全文
雷桅  王双明  孙敏 《广西植物》2007,27(5):770-774
以浸水处理为对照系统分析了Fe2+、Cu2+、Zn2+等金属离子对植物胁迫损伤相关的7个生理指标,并应用数理统计学和生物化学的相关原理和方法从氧自由基伤害的角度比较分析了这三种离子处理对植物生理特性的影响。结果表明:不同离子处理由于对植物造成的胁迫损伤不同,因而它们对植物生理特性的影响效应也有明显差异,并且这种差异与其所处理的离子胁迫性质间存在显著的关联性。  相似文献   

10.
胃(H++K+)-ATPase属于生物膜的第二类质子泵(E1E2型),从生理角度它是胃酸分泌的质子泵。本文结合我们初步的研究结果:猪、大白鼠胃粘膜(H++K+)-ATPase的纯化以及由消炎痛引起的急性胃粘膜病变与胃粘膜(H++K+)-ATPase的关系等,对此酶在近十几年来它的纯化、结构、性质、催化机理,向胃腔分泌盐酸的功能及其调节和胃病变的分子机理等方面进行了简要的综述。  相似文献   

11.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 μM ATP and 50 μM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 μM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+-ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 μM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

12.
The effects of barium, strontium and magnesium upon lens permeability characteristics were studied in the presence and absence of 2 mM calcium in the bathing medium. Permeability characteristics were determined by measuring lens potential, resistance and 42K efflux rates. Barium and strontium at equimolar concentrations to calcium were able to substitute for calcium in controlling lens sodium permeability. Magnesium was ineffective in this respect.Small changes in resistance and 42K efflux rates occurred when calcium was eliminated from bathing solution containing either 2 mM barium or strontium. These changes were interpreted to be the result of an increase in lens permeability to potassium. When 2 mM strontium was added to calcium-containing solution, there was no significant change in the electrical or flux parameters of the lens. However, the addition of 2 mM barium to calcium-containing solution resulted in a 54% increase in lens resistance and a 13 mV depolarization. These observations indicated a barium-induced decrease in lens permeability to potassium, and this was confirmed by an observed decrease in 42K efflux rate constant under similar experimental conditions.The rapid time course of all the observed changes implies that they are the result of changes in the permeability characteristics of membranes lying close to the surface of the lens.  相似文献   

13.
Liposomes containing either purified or microsomal (Na+,K+)-ATPase preparations from lamb kidney medulla catalyzed ATP-dependent transport of Na+ and K+ with a ratio of approximately 3Na+ to 2K+, which was inhibited by ouabain. Similar results were obtained with liposomes containing a partially purified (Na+,K+-ATPase from cardiac muscle. This contrasts with an earlier report by Goldin and Tong (J. Biol. Chem. 249, 5907–5915, 1974), in which liposomes containing purified dog kidney (Na+,K+)-ATPase did not transport K+ but catalyzed ATP-dependent symport of Na+ and Cl?. When purified by our procedure, dog kidney (Na+,K+)-ATPase showed some ability to transport K+ but the ratio of Na+ : K+ was 5 : 1.  相似文献   

14.
Effects of interrupted K+ supply on different parameters of growth and mineral cation nutrition were evaluated for spring wheat (Triticum aestivum L. cv. Svenno). K+ (2.0 mM) was supplied to the plants during different periods in an otherwise complete nutrient solution. Shoot growth was reduced before root growth after interruption in K+ supply. Root structure was greatly affected by the length of the period in K+ -free nutrient solution. Root length was minimal, and root branching was maximal within a narrow range of K+ status of the roots. This range corresponded to cultivation for the last 1 to 3 days, of 11 in total, in K+ -free nutrient solution, or to continuous cultivation in solution containing 0.5 to 2 mM K+. In comparison, both higher and lower internal/external K+ concentrations had inhibitory effects on root branching. However, the differing root morphology probably had no significant influence on the magnitude of Ca2+, Mg2+ and Na+ uptake. Uptake of Ca2+ and especially Mg2+ significantly increased after K+ interruption, while Na+ uptake was constant in the roots and slowly increased in the shoots. The two divalent cations could replace K+ in the cells and maintain electroneutrality down to a certain minimal range of K+ concentrations. This range was significantly higher in the shoot [110 to 140 μmol (g fresh weight)?1] than in the root [20 to 30 μmol (g fresh weight)?1]. It is suggested that the critical K+ values are a measure of the minimal amount of K+ that must be present for physiological activity in the cells. At the critical levels, K+ (86Rb) influx and Ca2+ and Mg2+ concentrations were maximal. Below the critical K+ values, growth was reduced, and Ca2+ and Mg2+ could no longer substitute for K+ for electrostatic balance. In a short-term experiment, the ability of Ca2+ to compete with K+ in maintaining electroneutrality in the cells was studied in wheat seedlings with different K+ status. The results indicate that K+, which was taken up actively and fastest at the external K+ concentration used (2.0 mM), partly determines the size of Ca2+ influx.  相似文献   

15.
The addition of LiCl stimulated the (Na++K+)-dependent ATPase activity of a rat brain enzyme preparation. Stimulation was greatest in high Na+/low K+ media and at low Mg. ATP concentrations. Apparent affinities for Li+ were estimated at the α-sites (moderate-affinity sites for K+ demonstrable in terms of activation of the associated K+-dependent phosphatase reaction), at the β-sites (high-affinity sites for K+ demonstrable in terms of activation of the overall ATPase reaction), and at the Na+ sites for activation. The relative efficacy of Li+ was estimated in terms of the apparent maximal velocity of the phosphatase and ATPase reactions when Li+ was substituted for K+, and also in terms of the relative effect of Li+ on the apparent KM for Mg· ATP. With these data, and previously determined values for the apparent affinities of K+ and Na+ at these same sites, quantitative kinetic models for the stimulation were examined. A composite model is required in which Li+ stimulates by relieving inhibition due to K+ and Na+ (i) by competing with K+ for the α-sites on the enzyme through which K+ decreases the apparent affinity for Mg·ATP and (ii) by competing with Na+ at low-affinity inhibitory sites, which may represent the external sites at which Na+ is discharged by the membrane NA+/K+ pump that this enzyme represents. Both these sites of action for Li+ would thus lie, in vivo, on the cell exterior.  相似文献   

16.
17.
The classical E2-P intermediate of (Na+ + K+)-ATPase dephosphorylates readily in the presence of K+ and is not affected by the addition of ADP. To determine the significane in the reaction cycle of (Na+ + K+)-ATPase of kinetically atypical phosphorylations of rat brain (Na+ + K+)-ATPase we compared these phosphorylated components with the classical E2-P intermediate of this enzyme by gel electrophoresis. When rat brain (Na+ + K+)-ATPase was phosphorylated in the presence of high concentrations of Na+ a proportion of the phosphorylated material formed was sensitive to ADP but resistant to K+. Similarly, if phosphorylation was carried out in the presence of Na+ and Ca2+ up to 300 pmol/mg protein of a K+-resistant, ADP-sensitive material were formed. If phosphorylation was from [γ-32P]CTP up to 800 pmol 32P/mg protein of an ADP-resistant, K+-sensitive phosphorylated matterial were formed. On gel electrophoresis these phosphorylated materials co-migrated with authentic Na+-stimulated, K+-sensitive, E2-P-phosphorylated intermediate of (Na+ + K+)-ATPase, supporting suggestions that they represent phosphorylated intermediates in the reaction sequence of this enzyme.  相似文献   

18.
Calmodulin-depleted isotonic erythrocyte ghosts contain 200 ng residual calmodulin/mg protein which is not removed by extensive washings at pCa2+ > 7. Specific activity and Ca2+-affinity of the (Ca2+ + Mg2+)ATPase increase at increasing calmodulin, with K0.5 Ca of 0.38 μM at calmodulin concentrations corresponding to that in erythrocytes. High Ca2+ concentrations inhibit the enzyme. Specific activity and Ca2+-affinity of the enzyme decrease at increasing Mg2+ concentrations. The Ca2+ ? Mg2+ antagonism is likewise observed at inhibitory Ca2+ concentrations.  相似文献   

19.
Vesicles isolated from rat heart, particularly enriched in sarcolemma markers, were examined for their sidedness by investigation of side-specific interactions of modulators with the asymmetric (Na+ + K+)-ATPase and adenylate cyclase complex. The membrane preparation with the properties expected for inside-out vesicles showed the highest rate of ATP-driven Ca2+ transport. The Ca2+ pump was stimulated 1.7- and 2.1-fold by external Na+ and K+, respectively, the half-maximal activation occurring at 35 mM monovalent cation concentration. In vesicles loaded with Ca2+ by pump action in a medium containing 160 mM KCl, a slow spontaneous release of Ca2+ started after 2 min. The rate of this release could be dramatically increased by the addition of 40 mM NaCl to the external medium. In contrast, 40 mM KCl exerted no appreciable effect on vesicles loaded with Ca2+ in a medium containing 160 mM NaCl. Ca2+ movements were also studied in the absence of ATP and Mg2+. Vesicles containing an outwardly directed Na+ gradient showed the highest Ca2+ uptake activity. These findings suggested the operation of a Ca2+/Na+ antiporter in addition to the active Ca2+ pump in these sarcolemmal vesicles. A valinomycin-induced inward K+-diffusion potential stimulated the Na+- Ca2+ exchange, suggesting its electrogenic nature. If in the absence of ATP and Mg2+ the transmembrane Nai+/Nao+ gradient exceeded 160/15 mM concentrations, Ca2+ uptake could be stimulated by the addition of 5 mM oxalate, indicating Na+ gradient-induced Ca2+ uptake to be a translocation of Ca2+ to the lumen of the vesicle. A sarcoplasmic reticulum contamination, removed by further sucrose gradient fractionation, contained rather low Na+-Ca2+ exchange activity. This result suggests that the activity can be entirely accounted for by the sarcolemmal content of the cardiac membrane preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号