首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 142 毫秒
1.
2.
3.
4.
The upstream region of the isocitrate lyase gene (UPR-ICL, 1530bp) of an n-alkane-utilizable yeast, Candida tropicalis, induced gene expression in another yeast, Saccharomyces cerevisiae, when the yeasts were grown on acetate. Surprisingly, UPR-ICL displayed the same regulatory function in the bacterium Escherichia coli when grown on acetate. We determined the interesting nucleotide sequence of UPR-ICL. The deletion analysis of UPR-ICL in both cells revealed the presence of two distinct promoters: one was localized at-394 to-379 and regulated gene expression in S. cerevisiae; the other was tocated near the initiation codon and regulated gene expression in E. coli. The two promoter sequences were similar, but not identical to regulatory elements that have been previously reported in S. cerevisiae and E. coli, respectively. Accordingly, the possibility of novel regulatory mechanisms could not be excluded. This is an interesting example of the presence of distinct cis-acting regulatory elements responsible for the induction of gene expression in one gene by acetate in both S. cerevisiae and E. coli. Preservation of such promoters through evolution is also discussed.Abbreviations ICL Isocitrate lyase - UPR-ICL Upstream region of the Candida tropicalis isocitrate lyase gene  相似文献   

5.
     The existence of a second mechanism of catabolite control of isocitrate lyase of Aspergillus nidulans, in addition to the carbon catabolite repression phenomenon recently reported was analysed. Isocitrate lyase was rapidly and specifically inactivated by glucose. The inactivation was irreversible at all stages in the presence of cycloheximide, showing that reactivation depends on de novo protein synthesis. In addition, analysis of glucose-induced inactivation of isocitrate lyase in a creA d -30 strain showed that the creA gene is not involved in this process. Received: 13 May 1994 / Accepted 12 August 1994  相似文献   

6.
When the isocitrate lyase gene, containing 5'-upstream and 3'-flanking regions, of an n-alkane-assimilating yeast Candida tropicalis was introduced into Saccharomyces cerevisiae, the enzyme was functionally overexpressed in the cells grown on acetate. The amount of the recombinant isocitrate lyase expressed in S. cerevisiae was as much as 30% of the total soluble proteins in the cells, being comparable to that with GAL7 functional under the control of galactose. The expression was also observed when the cells were grown on glycerol, lactate, ethanol or oleate. These facts indicate that the isocitrate lyase gene upstream region (UPR-ICL) contains a strong promoter functional in S. cerevisiae. UPR-ICL is active as a promoter on cheap carbon sources such as acetate and nonconventional carbon sources such as oleate, whereas many conventional strong promoters demand relatively expensive sugars or sugars derivatives. Therefore, it is promising to construct an economical recombinant protein production system by using UPL-ICL.  相似文献   

7.
8.
The ICL1 gene encoding isocitrate lyase was cloned from the dimorphic fungus Yarrowia lipolytica by complementation of a mutation (acuA3) in the structural gene of isocitrate lyase of Escherichia coli. The open reading frame of ICL1 is 1668 by long and contains no introns in contrast to currently sequenced genes from other filamentous fungi. The ICL1 gene encodes a deduced protein of 555 amino acids with a molecular weight of 62 kDa, which fits the observed size of the purified monomer of isocitrate lyase from Y. lipolytica. Comparison of the protein sequence with those of known pro- and eukaryotic isocitrate lyases revealed a high degree of homology among these enzymes. The isocitrate lyase of Y. lipolytica is more similar to those from Candida tropicalis and filamentous fungi than to Sacharomyces cerevisiae. This enzyme of Y. lipolytica has the putative glyoxysomal targeting signal S-K-L at the carboxy-terminus. It contains a partial repeat which is typical for eukaryotic isocitrate lyases but which is absent from the E. coli enzyme. Surprisingly, deletion of the ICL1 gene from the genome not only inhibits the utilization of acetate, ethanol, and fatty acids, but also reduces the growth rate on glucose.  相似文献   

9.
Summary An Aspergillus nidulans gene library was constructed in a high-frequency transformation vector, pDJB3, based on the Neurospora crassa pyr4 gene. This gene library was used to isolate the structural gene for isocitrate lyase (acuD) by complementation of a deficiency mutation following transformation of A. nidulans. Plasmids rescued in Escherichia coli were able to transform five different A. nidulans acuD mutants. Transformation using plasmids containing the cloned fragment resulted in integration at the acuD locus in six of nine transformants.  相似文献   

10.
11.
12.
13.
14.
15.
The ICL1 gene encoding isocitrate lyase was cloned from the dimorphic fungus Yarrowia lipolytica by complementation of a mutation (acuA3) in the structural gene of isocitrate lyase of Escherichia coli. The open reading frame of ICL1 is 1668 by long and contains no introns in contrast to currently sequenced genes from other filamentous fungi. The ICL1 gene encodes a deduced protein of 555 amino acids with a molecular weight of 62 kDa, which fits the observed size of the purified monomer of isocitrate lyase from Y. lipolytica. Comparison of the protein sequence with those of known pro- and eukaryotic isocitrate lyases revealed a high degree of homology among these enzymes. The isocitrate lyase of Y. lipolytica is more similar to those from Candida tropicalis and filamentous fungi than to Sacharomyces cerevisiae. This enzyme of Y. lipolytica has the putative glyoxysomal targeting signal S-K-L at the carboxy-terminus. It contains a partial repeat which is typical for eukaryotic isocitrate lyases but which is absent from the E. coli enzyme. Surprisingly, deletion of the ICL1 gene from the genome not only inhibits the utilization of acetate, ethanol, and fatty acids, but also reduces the growth rate on glucose.  相似文献   

16.
The metabolism of propane and propionate by a soil isolate (Brevibacterium sp. strain JOB5) was investigated. The presence of isocitrate lyase in cells grown on isopropanol, acetate, or propane and the absence of this inducible enzyme in n-propanol- and propionate-grown cells suggested that propane is not metabolized via C-terminal oxidation. Methylmalonyl coenzyme A mutase and malate synthase are constitutive in this organism. The incorporation of 14CO2 into pyruvate accumulated during propionate utilization suggests that propionate is metabolized via the methyl-malonyl-succinate pathway. These results were further substantiated by radiorespirometric studies with propionate-1-14C, -2-14C, and -3-14C as substrate. Propane -2-14C was shown, by unlabeled competitor experiments, to be oxidized to acetone; acetone and isopropanol are oxidized in this organism to acetol. Cleavage of acetol to acetate and CO2 would yield the inducer for the isocitrate lyase present in propane-grown cells.  相似文献   

17.
The glyoxylate shunt enzymes, isocitrate lyase and malate synthase, were present at high levels in mycelium grown on acetate as sole source of carbon, compared with mycelium grown on sucrose medium. The glyoxylate shunt activities were also elevated in mycelium grown on glutamate or Casamino Acids as sole source of carbon, and in amino acid-requiring auxotrophic mutants grown in sucrose medium containing limiting amounts of their required amino acid. Under conditions of enhanced catabolite repression in mutants grown in sucrose medium but starved of Krebs cycle intermediates, isocitrate lyase and malate synthase levels were derepressed compared with the levels in wild type grown on sucrose medium. This derepression did not occur in related mutants in which Krebs cycle intermediates were limiting growth but catabolite repression was not enhanced. No Krebs cycle intermediate tested produced an efficient repression of isocitrate lyase activity in acetate medium. Of the two forms of isocitrate lyase in Neurospora, isocitrate lyase-1 constituted over 80% of the isocitrate lyase activity in acetate-grown wild type and also in each of the cases already outlined in which the glyoxylate shunt activities were elevated on sucrose medium. On the basis of these results, it is concluded that the synthesis of isocitrate lyase-1 and malate synthase in Neurospora is regulated by a glycolytic intermediate or derivative. Our data suggest that isocitrate lyase-1 and isocitrate lyase-2 are the products of different structural genes. The metabolic roles of the two forms of isocitrate lyase and of the glyoxylate cycle are discussed on the basis of their metabolic control and intracellular localization.  相似文献   

18.
Bradyrhizobium japonicum, the nitrogen-fixing symbiotic partner of soybean, was grown on various carbon substrates and assayed for the presence of the glyoxylate cycle enzymes, isocitrate lyase and malate synthase. The highest levels of isocitrate lyase [165–170 nmol min–1 (mg protein)–1] were found in cells grown on acetate or β-hydroxybutyrate, intermediate activity was found after growth on pyruvate or galactose, and very little activity was found in cells grown on arabinose, malate, or glycerol. Malate synthase activity was present in arabinose- and malate-grown cultures and increased by only 50–80% when cells were grown on acetate. B. japonicum bacteroids, harvested at four different nodule ages, showed very little isocitrate lyase activity, implying that a complete glyoxylate cycle is not functional during symbiosis. The apparent K m of isocitrate lyase for d,l-isocitrate was fourfold higher than that of isocitrate dehydrogenase (61.5 and 15.5 μM, respectively) in desalted crude extracts from acetate-grown B. japonicum. When isocitrate lyase was induced, neither the V max nor the d,l-isocitrate K m of isocitrate dehydrogenase changed, implying that isocitrate dehydrogenase is not inhibited by covalent modification to facilitate operation of the glyoxylate cycle in B. japonicum. Received: 10 October 1997 / Accepted: 16 January 1998  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号