首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
An Arabidopsis thaliana mutant, exhibiting anther specific GUS expression, identified from a mutant population of Arabidopsis tagged with a promoterless β-glucuronidase (GUS), carries the T-DNA insertions at two distinct loci. We have been able to segregate the two inserts from each other by backcrossing with wild type plants. The insertion responsible for anther specific GUS expression in segregating population has been identified and confirmed to be in the upstream region of a putative peroxidase gene, AT2G24800. Here we report detailed histochemical and molecular characterization of the mutant Anth85, carrying a single insertion of T-DNA in the peroxidase gene. In Anth85, the GUS expression was observed in the anthers and rosette of the young seedlings. The expression of GUS in the anthers was restricted to the tapetum and microspores. The mutant has no developmental defects and the gene appears to be redundant for normal plant growth. Cloning of upstream region and detailed deletion study of upstream region in transgenic plants is likely to lead to the identification of anther specific promoter elements.  相似文献   

2.
3.
4.
Cryptic promoter elements play a significant role in evolution of plant gene expression patterns and are prospective tools for creating gene expression systems in plants. In a previous report, a 452 bp promoter fragment designated as cryptic root-specific promoter (AY601849) was identified immediately upstream to T-DNA insertion, in the intergenic region between divergent genes SAHH1 and SHMT4, in T-DNA tagged mutant M57 of Arabidopsis thaliana. In silico analysis of 452 bp promoter revealed typical eukaryotic promoter architecture, presence of root-specific motifs and other cis-regulatory motifs responsible for the spatial and temporal expression. GUS expression driven by 452 bp in M57 was developmentally as well as light-regulated. The AT-rich 452 bp promoter does not show homology to any known sequences. The 452 bp promoter was further proved cryptic and detailed molecular characterization of the promoter carried out through serial 5′ and 3′ deletion analysis, by cloning the promoter fragments upstream to promoter-less GUS vector. A 279 bp fragment obtained by deleting 173 bp from 5′ end of 452 bp was capable of driving root-specific expression, similar to that of full-length promoter. Further, root tip-specific, root-specific and core-regulatory motifs for root-specific expression were identified at positions 173–227, 251–323 and 408–452 bp, respectively, from the 5′ end of 452 bp. The 452 bp promoter was equally functional in inverse orientation, hence bidirectional and symmetric. In heterologous systems, such as Brassica juncea and Oryza sativa, the promoter activity was not significant since GUS was not visually detected in transient assays.  相似文献   

5.
6.
7.
8.
OsGSTL1 gene was isolated from the rice genomic library. Semi-quantitative RT-PCR analysis demonstrated that the expression of the OsGSTL1 in rice was not induced by chlorsulfuron, ethylene, abscisic acid, salicylic acid, and methyl jasmonate. In order to investigate the cis-elements of OsGSTL1 promoter, the promoter regions with different lengths were fused to the β-glucuronidase (GUS) reporter gene. All constructs were transformed into onion epidermal cells or A. thaliana plants to detect the expression patterns. In onion epidermal cells, the 160 bp fragment and longer ones were functional for directing GUS expression. In transgenic A. thaliana, the 2?155 bp upstream region of OsGSTL1 gene directed the GUS expression only in cotyledon after germination, but not in the root of young seedlings. In the later seedling, the 2?155 bp upstream region of OsGSTL1 gene directed GUS expression in roots, stems, and leaves. However, the GUS gene directed by a 1?224 bp upstream fragment is expressed in all the checked tissues. These results suggest that the spatiotemporal expression response elements of OsGSTL1 existed in the 5′-upstream region between −2?155 and −1?224 bp.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Isolation and characterization of promoters are important in understanding gene regulation and genetic engineering of crop plants. Earlier, a pentatricopeptide repeat protein (PPR) encoding gene (At2g39230), designated as Lateral Organ Junction (LOJ) gene, was identified through T-DNA promoter trapping in Arabidopsis thaliana. The upstream sequence of the LOJ gene conferred on the reporter gene a novel LOJ-specific expression. The present study was aimed at identifying and characterizing the cis-regulatory motifs responsible for tissue-specific expression in the −673 and +90 bases upstream of the LOJ gene recognized as LOJ promoter. In silico analysis of the LOJ promoter revealed the presence of a few relevant regulatory motifs and a unique feature like AT-rich inverted repeat. Deletion analysis of the LOJ promoter confirmed the presence of an enhancer-like element in the distal region (−673/−214), which stimulates a minimal promoter-like sequence in the −424/−214 region in a position and orientation autonomous manner. The −136/+90 region of the LOJ promoter was efficient in driving reporter gene expression in tissues like developing anthers and seeds of Arabidopsis. A positive regulation for the seed- and anther-specific expression module was contemplated within the 5′ untranslated region of the LOJ gene. However, this function was repressed in the native context by the lateral organ junction-specific expression. The present study has led to the identification of a novel lateral organ junction-specific element and an enhancer sequence in Arabidopsis with potential applications in plant genetic engineering.  相似文献   

16.
17.
18.
19.
20.
S-adenosyl homocysteine hydrolase (SAHH) is a key enzyme in methylation metabolism of eukaryotes. A 1585 by fragment upstream to ATG of SAHH1 gene, was fused with a promoter-less β-Glucuronidase (GUS) gene and mobilized into Arabidopsis by Agrobacterium-mediated floral transformation to generate transgenic Arabidopsis. This fragment was found to drive constitutive expression of GUS in T2 progeny of transgenic Arabidopsis. In silico analysis of the promoter region of SAHH1 suggested the presence of several cis-regulatory motifs including seed-specific motifs as well as anther-specific motifs in the 376 by (upstream to TSS of SAHH1) promoter fragment. Based on the partial deletion analysis carried out in the promoter region of SAHH1 (At4gl3940) this 376 by promoter fragment was found to be capable of driving GUS expression in developing seeds and in some anthers/micros pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号