首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 593 毫秒
1.
蛋白酶体结构和活性调节机制的研究进展   总被引:1,自引:0,他引:1  
蛋白酶体负责细胞内绝大多数蛋白质的降解,几乎对生物体所有的生命活动都具有调控作用.蛋白酶体功能异常能够导致很多疾病.近期,研究者们在蛋白酶体的结构分析和活性调节机制等方面的研究都获得了重要的突破.本文综述了有关蛋白酶体结构和活性调控机制,包括转录调控、翻译后修饰、组装机制等的研究进展,这些对蛋白酶体新的认识将为蛋白酶体相关疾病的研究及相应药物的开发带来新的思路.对于目前蛋白酶体抑制剂的研发本文也做了简要的介绍.  相似文献   

2.
26S蛋白酶体广泛分布于真核细胞中的胞质和胞核,主要是由20S核心复合物(coreparticle,CP)和19S调节复合物(regulatory particle,RP)组成,它负责细胞大多数蛋白质的降解,在几乎所有生命活动中具有关键的调控作用。26S蛋白酶体的组装是一个非常复杂且高度条理的过程,不同的分子伴侣,如PAC1-4、Ump1、p27、p28和s5b等,参与其中发挥识别及调节作用,以确保高效准确地完成蛋白酶体的组装。本文系统总结分析了20S核心复合物和19S调节复合物的组装过程及调控机制的最近研究进展。  相似文献   

3.
许娆  刘萱  曹诚 《生物技术通讯》2007,18(6):985-988
蛋白酶体是具有多种蛋白水解酶活性的蛋白质降解系统,由于细胞内许多关键信号调控分子都是蛋白酶体的降解底物,因此蛋白酶体在细胞周期调控、基因表达、炎症反应等各种关键的生物学活动中都发挥着极其重要的调节作用。蛋白酶体的降解活性也同时受多种机制的调控,其中的翻译后修饰是蛋白酶体降解途径中一个不可忽视的方面。着重阐述蛋白酶体自身及其底物的几种重要的翻译后修饰,探讨最新的进展及其生物学意义。  相似文献   

4.
蛋白酶体调节颗粒(regulatory particle,RP)参与调控许多重要信号通路的蛋白质降解,在维持细胞稳态中发挥重要作用。近年来,真核细胞蛋白酶体在癌症治疗中的作用机制及药物研发已引起了广泛关注,并有3种蛋白酶体抑制剂已用于临床治疗。随着蛋白酶体功能研究的不断深入,以及晶体学和冷冻电镜技术在其结构生物学研究中的广泛应用,目前已解析了3类蛋白酶体调节颗粒的原子结构。类型1是保守的调节颗粒19S(PA700);类型2是11S蛋白酶体调节颗粒PA28(PA28α,PA28β,PA28γ)和PA26等;类型3是保守的Blm10/PA200蛋白酶体调节颗粒。其中,类型1以ATP依赖的方式发挥蛋白质降解活性,类型2和类型3以非ATP依赖的方式发挥功能。通过研究3种不同类型蛋白酶体调节颗粒的结构和功能,阐明了蛋白酶体活性调节机制并促进了基于蛋白酶体结构的抑制剂开发。本文以蛋白酶体调节颗粒的结构生物学研究为基础,系统地总结了3类家族蛋白质的结构生物学特征和其调节蛋白酶体活性机制的研究进展,这些将为深入了解蛋白酶体的作用机制及其在癌症治疗领域的药物设计提供重要的参考信息。  相似文献   

5.
细菌体内的蛋白质降解   总被引:1,自引:0,他引:1  
摘要:为了适应多变的外界环境,细菌利用蛋白降解来清除体内不需要的蛋白质。AAA+蛋白酶降解机制在细菌蛋白质质量控制系统中发挥重要作用,而在放线菌中发现的蛋白酶体揭示了原核生物体内一个崭新的蛋白质降解机制。蛋白酶只识别携带降解决定子的底物,确保了蛋白质降解的特异性,除此之外细菌还通过一些其他方式调控蛋白质的降解与否。随着真核生物体内泛素依赖的蛋白酶体降解途径的发现,蛋白质降解过程参与调控机体生理活动的功能也逐渐为人所知。研究发现,蛋白质降解参与调控细菌的生长、分化,并与细菌的应激反应以及毒力等相关。本文将对细菌中存在的AAA + 蛋白质降解机制,包括其结构、对底物的降解过程及其生理功能等进行阐述。  相似文献   

6.
目的:了解泛素-蛋白酶体系统在鞭毛解聚中的作用。方法:用激光共聚焦显微镜观察泛素蛋白在杜氏盐藻鞭毛上的定位;分别诱导鞭毛的组装和解聚,观察鞭毛组装和解聚后泛素化蛋白的变化;采用甘油密度梯度离心法对蛋白酶体进行纯化,荧光多肽底物检测各处理组蛋白酶体活性的变化。结果:所提取的鞭毛蛋白上存在大量泛素化蛋白;与对照组相比,鞭毛解聚组泛素化蛋白增多,蛋白酶体活性升高近2倍。结论:泛素-蛋白酶体参与盐藻鞭毛的解聚,为进一步阐明鞭毛解聚机制提供了依据。  相似文献   

7.
雄激素可调控骨骼肌蛋白质代谢,从而在肌肉质量的维持中发挥重要作用。对雄激素作用机制的研究表明,雄激素可在雄激素受体介导下,分别通过IGF-1/Akt、ERK/mTOR和GPCR等信号通路促进骨骼肌蛋白质合成,促进肌肉质量增长;当雄激素不足时,可通过泛素蛋白酶体系统、自噬和肌肉生长抑制素等途径促进骨骼肌蛋白质分解和肌肉流失。雄激素调控骨骼肌蛋白质代谢机制的阐明,将加深人们对雄激素功能及骨骼肌蛋白质代谢调控的认识,具有重要意义。  相似文献   

8.
泛素-蛋白酶体途径是细胞内蛋白质选择性降解的主要途径,参与多种真核生物细胞生理过程,与细胞的生理功能和病理状态有着密切的关系。该途径中UFD1作为泛素识别因子介导泛素化的靶蛋白至26S蛋白酶体降解。该文在概述泛素-蛋白酶体途径作用机制的基础上,对哺乳动物和酵母UFD1蛋白的结构及其在细胞周期调控、转录调控、内质网相关蛋白降解中的功能进行了综述。  相似文献   

9.
蛋白酶体结构和功能研究进展   总被引:3,自引:0,他引:3  
蛋白酶体是真核细胞内依赖ATP的蛋白质水解途径的重要成分,负责大多数细胞内蛋白质的降解. 20 S蛋白酶体有多种肽酶活性,其活性位点为Thr. 19 S复合物与20 S蛋白酶体结合成为26 S复合物,能降解泛素化蛋白.近几年来,蛋白酶体的分子组成、亚基、生化机理、胞内功能等方面的研究取得了明显进展.  相似文献   

10.
真核泛素-蛋白酶体系统是细胞内蛋白质降解的重要机制,参与细胞生理功能调控,因此泛素-蛋白酶体通路的机制和功能研究备受关注.20世纪80年代,人们就发现放线菌中存在原核蛋白酶体,但是对于原核蛋白酶体的功能和作用机理长期以来了解甚少.2008年,Pearce等在结核分枝杆菌中发现了原核类泛素蛋白(prokaryotic ubiquitin-like protein,Pup).在Dop、PafA、Mpa等辅助因子的作用下,Pup可以共价标记多种功能蛋白,并介导被标记蛋白质通过蛋白酶体降解,Pup-蛋白酶体系统的发现揭示了原核生物中一个崭新的蛋白质降解机制.Pup-蛋白酶体系统的靶蛋白涉及物质中间代谢、信号通路、毒性和抗毒性因子、细胞壁和细胞膜组分等多个方面,并且与结核分枝杆菌的致病性相关,被认为是新的结核病治疗药物靶点.本文就原核Pup-蛋白酶体系统的作用机理及其功能的研究进展作一综述.  相似文献   

11.
12.
The 26S proteasome, composed of the 20S core and the 19S regulatory complex, plays a central role in ubiquitin-dependent proteolysis by catalyzing degradation of polyubiquitinated proteins. In a search for proteins involved in regulation of the proteasome, we affinity purified the 19S regulatory complex from HeLa cells and identified a novel protein of 43 kDa in size as an associated protein. Immunoprecipitation analyses suggested that this protein specifically interacted with the proteasomal ATPases. Hence the protein was named proteasomal ATPase-associated factor 1 (PAAF1). Immunoaffinity purification of PAAF1 confirmed its interaction with the 19S regulatory complex and further showed that the 19S regulatory complex bound with PAAF1 was not stably associated with the 20S core. Overexpression of PAAF1 in HeLa cells decreased the level of the 20S core associated with the 19S complex in a dose-dependent fashion, suggesting that PAAF1 binding to proteasomal ATPases inhibited the assembly of the 26S proteasome. Proteasomal degradation assays using reporters based on green fluorescent protein revealed that overexpression of PAAF1 inhibited the proteasome activity in vivo. Furthermore, the suppression of PAAF1 expression that is mediated by small inhibitory RNA enhanced the proteasome activity. These results suggest that PAAF1 functions as a negative regulator of the proteasome by controlling the assembly/disassembly of the proteasome.  相似文献   

13.
Myosin motors are central to diverse cellular processes in eukaryotes. Homologues of the myosin chaperone UNC-45 have been implicated in the assembly and function of myosin-containing structures in organisms from fungi to humans. In muscle, the assembly of sarcomeric myosin is regulated to produce stable, uniform thick filaments. Loss-of-function mutations in Caenorhabditis elegans UNC-45 lead to decreased muscle myosin accumulation and defective thick filament assembly, resulting in paralyzed animals. We report that transgenic worms overexpressing UNC-45 also display defects in myosin assembly, with decreased myosin content and a mild paralysis phenotype. We find that the reduced myosin accumulation is the result of degradation through the ubiquitin/proteasome system. Partial proteasome inhibition is able to restore myosin protein and worm motility to nearly wild-type levels. These findings suggest a mechanism in which UNC-45-related proteins may contribute to the degradation of myosin in conditions such as heart failure and muscle wasting.  相似文献   

14.
The ubiquitin‐proteasome system (UPS) is a rapid regulatory mechanism for selective protein degradation in plants and plays crucial roles in growth and development. There is increasing evidence that the UPS is also an integral part of plant adaptation to environmental stress, such as drought, salinity, cold, nutrient deprivation and pathogens. This review focuses on recent studies illustrating the important functions of the UPS components E2s, E3s and subunits of the proteasome and describes the regulation of proteasome activity during plant responses to environment stimuli. The future research hotspots and the potential for utilization of the UPS to improve plant tolerance to stress are discussed.  相似文献   

15.
The molecular basis for coordinated regulation of protein synthesis and degradation is not understood. Here we report that the 20S proteasome endoproteolytically cleaves the translation initiation factors eIF4G, a subunit of eIF4F, and eIF3a, a subunit of eIF3. The cleavage of eIF4G or eIF3a differentially affects the assembly of ribosomal preinitiation complexes on different cellular and viral mRNAs in an in vitro system containing pure components. Inhibition of proteolytic activity of the 20S proteasome with specific inhibitors prevents cleavage of both factors in vitro and in vivo, restores assembly of ribosomal complexes in vitro, and differentially affects translation of different mRNAs in vivo. These studies demonstrate the importance of the endoproteolytic activity of proteasomes in regulation of cellular processes and suggest a link between protein synthesis and degradation.  相似文献   

16.
Because a limited study previously showed that alpha-synuclein (alpha-syn), the major pathogenic protein for Parkinson disease, was expressed in differentiating brain tumors as well as various peripheral cancers, the main objective of the present study was to determine whether alpha-syn might be involved in the regulation of tumor differentiation. For this purpose, alpha-syn and its non-amyloidogenic homologue beta-syn were stably transfected to human osteosarcoma MG63 cell line. Compared with beta-syn-overexpressing and vector-transfected cells, alpha-syn-overexpressing cells exhibited distinct features of differentiated osteoblastic phenotype, as shown by up-regulation of alkaline phosphatase and osteocalcin as well as inductive matrix mineralization. Further studies revealed that proteasome activity was significantly decreased in alpha-syn-overexpressing cells compared with other cell types, consistent with the fact that proteasome inhibitors stimulate differentiation of various osteoblastic cells. In alpha-syn-overexpressing cells, protein kinase C (PKC) activity was significantly decreased, and reactivation of PKC by phorbol ester significantly restored the proteasome activity and abrogated cellular differentiation. Moreover, activity of lysosome was up-regulated in alpha-syn-overexpressing cells, and treatment of these cells with autophagy-lysosomal inhibitors resulted in a decrease of proteasome activity associated with up-regulation of alpha-syn expression, leading to enhance cellular differentiation. Taken together, these results suggest that the stimulatory effect of alpha-syn on tumor differentiation may be attributed to down-regulation of proteasome, which is further modulated by alterations of various factors, such as protein kinase C signaling pathway and a autophagy-lysosomal degradation system. Thus, the mechanism of alpha-syn regulation of tumor differentiation and neuropathological effects of alpha-syn may considerably overlap with each other.  相似文献   

17.
Proteasome is a multi-subunit proteolytic complex that degrades proteins covalently linked to multiple molecules of ubiquitin. Earlier studies showed a role for the ubiquitin-proteasome pathway in several models of long-term memory and other forms of synaptic plasticity. In Aplysia, the ubiquitin-proteasome pathway has been shown to contribute to the induction of long-term facilitation. In other model systems, ubiquitin-proteasome-mediated proteolysis has also been shown to play a role in synapse development. Previous studies of synaptic plasticity focused on changes in components or the substrates of the ubiquitin-proteasome pathway in whole neurons. Modification of specific synapses would require precise spatial and temporal regulation of the components of the ubiquitin-proteasome pathway within the subcellular compartments of neurons during learning. As a first step towards testing the idea of local regulation of the ubiquitin-proteasome pathway in neurons, we investigated proteasome activity in nuclear and synaptosomal fractions. Here we show that proteasome activity in the synaptic terminals is higher compared to the activity in the nucleus in the Aplysia nervous system as well as in the mouse brain. Furthermore, the proteasome activity in the two neuronal compartments is differentially modulated by protein kinases. Differential regulation of proteasome activity in neuronal compartments such as the synaptic terminals is likely to be a key mechanism underlying synapse-specific plasticity.  相似文献   

18.
The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号