首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
为探明集约经营对毛竹林土壤碳库、氮库以及酶活性的影响,在浙江省临安市选取相邻的粗放经营毛竹林和集约经营毛竹林(经营年限为15年),测定表层(0~20 cm)与亚表层(20~40 cm)土壤不同形态碳氮和蔗糖酶、脲酶、过氧化氢酶和酸性磷酸酶的活性.结果表明: 长期集约经营显著降低毛竹林土壤有机碳含量和储量,表层和亚表层土壤有机碳储量分别下降13.2%和18.0%;集约经营15年后,毛竹林表层和亚表层土壤水溶性碳、热水溶性碳、微生物生物量碳和易氧化碳含量均显著降低;与粗放经营毛竹林相比,集约经营毛竹林表层和亚表层土壤氮储量分别增加50.8%和36.6%;集约经营显著增加毛竹林土壤硝态氮和铵态氮含量,显著降低土壤水溶性氮和微生物生物量氮含量;集约经营15年后,毛竹林表层土壤蔗糖酶、脲酶、过氧化氢酶和酸性磷酸酶活性均显著下降,亚表层土壤酸性磷酸酶活性显著下降,而其他酶活性均无显著变化.长期集约经营导致毛竹林土壤碳储量、活性碳库和微生物活性显著下降,在以后的经营过程中要注意化肥与有机肥配合使用,以保证毛竹林的可持续经营.  相似文献   

2.
为揭示集约经营对毛竹林土壤固氮细菌群落特征的影响,采用变性梯度凝胶电泳(DGGE)和荧光定量PCR技术,分析集约经营0(CK)、10、15、20、25年毛竹林土壤固氮菌群落结构和丰度的变化规律,并探讨了影响土壤固氮菌群落的主要环境因素.结果表明: 毛竹林集约经营导致土壤pH下降而速效养分积累;集约经营初期(10年)和后期(25年)土壤固氮细菌的群落结构与对照相似,而中期的15年和20年则与对照差异较大.固氮菌多样性指数和丰度均呈现先减少后增加的趋势,经营15年时达到最小值;土壤固氮细菌表现出对集约经营干扰的抵抗和恢复反应.冗余分析表明,土壤速效钾、水解氮、硝态氮和铵态氮的含量与固氮菌群落结构的变化有较强的相关性,表明集约经营措施导致了土壤固氮细菌短期的变化,但长期而言,不会对土壤固氮细菌产生不良影响.  相似文献   

3.
研究土壤固碳微生物丰度、群落结构、多样性差异及其影响因子对了解青藏高原土壤碳循环和固碳潜力具有重要意义。采用定量PCR(qPCR)、末端限制性片段分析(T-RFLP)、克隆文库和测序方法,研究了青藏高原草甸土壤固碳微生物丰度与群落结构随海拔和季节的变化,主要结果如下:1)随海拔升高高寒草甸土壤固碳微生物丰度显著升高,但季节变化不明显,不同类别微生物固碳基因cbbL丰度依次为:Form ICForm IABForm ID,其中Form IC类固碳微生物可达10~8拷贝数/g土壤,cbbL基因丰度与海拔、土壤含水量和铵态氮含量(NH_4~+-N)呈正相关关系,与土壤温度和pH值负相关;2)固碳微生物多样性和丰富度随海拔升高而升高,在4800m达到最大,且二者受季节影响较小,其群落结构随海拔升高而逐渐变化,主要受土壤pH值、海拔和土壤水分影响;3)Form IC类固碳微生物主要包括放线菌门和和变形菌门,其中α变形菌门是高寒草甸土壤优势固碳微生物类群。本研究有助于理解土壤微生物群落功能及其在土壤碳循环过程中的作用,为更准确评估高寒草甸土壤碳循环过程提供了科学依据。  相似文献   

4.
不同经营类型毛竹林土壤活性有机碳的差异   总被引:3,自引:0,他引:3  
以起始于1984年的长期不同经营类型毛竹林为研究对象,探讨了秋季毛竹林集约经营后土壤有机碳库的变化。结果表明:(1)集约经营后0—10 cm土层毛竹林土壤总有机碳、易氧化碳、水溶性有机碳和轻组有机质含量分别下降了8.64%,14.11%,8.29%,29.70%(0—20 cm),差异均达到显著水平。(2)两种毛竹林土壤各种碳的剖面特征均随土层深度的增加而呈下降趋势,但下降幅度不同。集约经营在一定程度上影响了毛竹土壤易氧化碳、水溶性有机碳的剖面特征。(3)土壤各活性有机碳之间,土壤总有机碳、易氧化碳、水溶性有机碳与土壤全氮、水解氮、速效K、Ca、Mg之间相关性均达到显著或极显著水平(水溶性有机碳与速效磷相关性不显著),轻组有机质含量除与速效钙极显著相关外,与其它土壤养分之间相关性均不显著。(4)集约经营降低了土壤易氧化碳碳素有效率、水溶性有机碳碳素有效率及土壤碳库活度,并在土壤剖面部分土层达到显著水平。因此,集约经营的毛竹林,通过配施恰当比例的有机无机肥,结合土壤垦复、除草、合理的竹株留养和采伐等综合竹林经营技术,以达到改善土壤质量和实现毛竹林可持续经营的目的。  相似文献   

5.
毛竹种植对土壤细菌和真菌群落结构及多样性的影响   总被引:2,自引:0,他引:2  
为揭示天然林改为毛竹林过程中土壤微生物变化规律,在浙江省湖州市安吉县和长兴县两地选择不同种植历史的粗放经营毛竹林,分层采集0~20和20~40 cm的混合土壤样品,应用PCR-DGGE技术分析土壤细菌和真菌群落结构及多样性变化.结果表明: 在马尾松林改种毛竹林或毛竹林入侵杂灌阔叶林形成毛竹纯林过程中,土壤细菌和真菌的群落结构均发生明显变化,且细菌结构对毛竹种植的响应更敏感;随着毛竹生长时间的延长,表层土壤细菌群落表现出抵抗干扰、最后向改种毛竹之前状态恢复的趋势.毛竹种植时间、样地和土层均对土壤细菌和真菌多样性产生显著影响,其中样地和土层的影响明显大于种植时间.土壤性质和细菌、真菌结构的冗余分析结果表明,不同地点、不同土层驱动土壤微生物结构随时间变化的主要因子没有一致规律,且第1、2轴对样地变化的解释率大多低于65.0%,说明除本研究分析的5个土壤化学指标外,可能还有其他土壤理化性质共同驱动微生物结构的变化.  相似文献   

6.
长期施肥对稻田土壤固碳功能菌群落结构和数量的影响   总被引:3,自引:0,他引:3  
微生物固碳在减缓全球气候变化、实现人类可持续发展方面具有重要的意义,通过揭示长期不同施肥制度对土壤固碳细菌的影响规律,可以为我国稻田土壤科学施肥,稻田固碳和温室气体减排的共轭双赢作用提供重要的理论依据。以湖南宁乡国家级稻田肥力变化长期定位试验为平台,采用PCR-克隆测序和实时荧光定量(Real-time)PCR技术,研究不施肥(CK),氮磷钾肥(NPK)和秸秆还田(NPKS)3种长期施肥制度对稻田土壤固碳细菌群落结构及数量的影响。通过分析固碳细菌cbbL基因文库发现,长期施肥导致土壤固碳细菌种群结构产生了明显差异,NPK和NPKS处理中兼性自养固碳菌群落优势增加而严格自养固碳菌生长受到抑制。LUBSHUFF软件统计分析显示cbbL基因文库在CK、NPK及NPKS处理间均存在显著性差异。 3种施肥处理的稻田土壤细菌cbbL基因拷贝数为3.35?108 —5.61?108每克土,施肥后,土壤细菌cbbL基因数量增加,其中NPKS处理cbbL数量最多,是CK处理的1.5倍左右。稀疏曲线则显示长期施化肥导致细菌cbbL基因多样性高于NPKS,而NPKS高于CK。上述结果表明了长期施肥对土壤固碳细菌群落结构,多样性及数量均有显著的影响。本研究结果可为深入探讨稻田土壤微生物固碳潜力及其影响机理提供有力的依据。  相似文献   

7.
植茶年限对土壤微生物群落结构及多样性的影响   总被引:1,自引:0,他引:1  
为探明植茶年限对土壤微生物群落结构及多样性的影响,以0、20、25、38和48年茶园土壤表层(0~20 cm)、亚表层(20~40 cm)土壤样品为研究对象,采用T-RFLP技术及qPCR方法对土壤细菌(B)、真菌(F)群落进行分析。结果表明: 植茶后土壤理化性质明显改变,随植茶年限的增加土壤有机碳、碱解氮及有效磷含量呈先升高后降低的趋势,表层土壤有机碳和全氮含量均显著高于亚表层土壤。不同植茶年限土壤细菌群落组分存在差异且多样性指数随植茶年限的增加呈下降趋势,而不同植茶年限土壤真菌群落组分差异不明显且多样性指数无显著差异。总体来看,土壤细菌群落对植茶年限的响应比真菌群落敏感。随植茶年限的增加,茶园土壤微生物群落有从F/B较低的“细菌型”向F/B较高的“真菌型”转变的趋势。  相似文献   

8.
纳木错湖水体固碳微生物数量、群落结构及其驱动因子   总被引:1,自引:0,他引:1  
湖泊是微生物固碳的主要生态系统之一,但青藏高原湖泊水体固碳微生物群落的研究还罕见报道。以纳木错为例,采用定量PCR和克隆文库方法,研究湖水中cbbL ID基因丰度和固碳微生物群落组成,并分析其与环境参数的关系。结果显示:纳木错湖水中存在较高丰度的cbbL ID类型固碳微生物,从表层到底层呈增加趋势,T2点底层达到最高值(6.37×10~8拷贝L~(-1)湖水)。cbbL ID类型固碳微生物共分四个类群,即不等鞭毛类(Stramenopiles),定鞭藻纲(Haptophyceae),蓝藻(Cyanobacteria)和隐藻门(Cryptophyta)。其中占主要的是Stramenopiles和Haptophyceae。Stramenopiles类群的多样性较高(含7个纲,13个科),其他类群只有1个科。相关性分析表明Stramenopiles和Haptophyceae出现频率存在显著的负相关关系(P0.01)。湖水深度和pH与湖水cbbL ID基因丰度显著相关(P0.05,P0.01)。叶绿素含量与Stramenopiles和Haptophyceae出现频率显著相关(P0.01)。  相似文献   

9.
温带草原退化后土壤微生物群落结构和功能的变化 草原退化是草原生产力维持面临的一个重大挑战,这一过程显著影响着草原生态系统的能量流动和土壤养分变化过程,进而直接或间接地影响着土壤微生物。我们的研究目的首先是调查不同草原退化程度(即未退化、中度退化和严重退化)如何影响着内蒙古温带草原的土壤微生物组成、多样性和功能,其次是阐明哪些生物和非生物因素导致了这些变化。我们的研究主要通过高通量测序技术分析土壤微生物的群落组成,并且采用FAPROTAX工具和FUNGuild工具分别预测细菌群落和真菌群落的功能。研究发现:草原退化显著降低了土壤细菌的多样性,但对真菌多样性影响不大。地下生物量、土壤有机碳和总氮与细菌的多样性变化呈显著正相关关系。草原退化显著增加了绿弯菌门的相对丰度(由2.48%提高到8.40%),降低了厚壁菌门的相对丰度(由3.62%降低到1.08%)。其次,草原退化也显著增加了球囊菌门的相对丰度(从0.17%提高到1.53%),降低了担子菌门的相对丰度(从19.30%降低到4.83%)。致病菌的相对丰度在草原退化过程中显著下降。此外,草原退化对土壤细菌群落的功能有显著的影响,尤其是与土壤碳氮循环相关的土壤细菌群落。我们的结果表明,土壤细菌群落对草原退化的响应比真菌群落更敏感。  相似文献   

10.
王楠  潘小承  白尚斌 《生态学报》2020,40(10):3420-3430
酸沉降造成的土壤持续酸化对毛竹林生态系统碳循环具有重要的影响,为量化酸沉降我国亚热带毛竹林土壤的影响,于2016年在浙江省杭州临安天目山国家级自然保护区毛竹林持续开展了2年野外模拟酸雨淋溶土壤实验,设置pH 4.0(T1)和pH 2.0(T2)两个模拟酸雨处理,以pH 5.8天然湖水为对照(CK),分析酸雨作用下土壤CO_2排放及土壤微生物多样性的变化趋势,并明确毛竹林土壤呼吸、土壤微生物及土壤理化性质三者之间的关系。结果表明:土壤呼吸速率在酸雨作用下经过缓冲期后呈现先促进后抑制的变化,作用强度表现为:T2T1。不同处理的土壤呼吸对温度的敏感性由高到低依次是:T2、CK、T1。PCR-DGGE分析表明,模拟酸雨改变了土壤微生物菌群结构,T2处理抑制了土壤细菌的多样性和丰富度,而T1处理对土壤真菌多样性和丰富度具有促进作用。土壤pH值、有效钾、可溶有机碳、微生物量碳、碱解氮和有效磷对土壤微生物群落结构及土壤呼吸具有显著的影响(P0.05)。综上所述,模拟酸雨能够显著抑制毛竹林的土壤呼吸,并改变土壤微生物群落结构及多样性,这些结果为进一步研究毛竹林土壤生态系统对环境问题响应机制提供理论基础。  相似文献   

11.
Carbon dioxide (CO2) assimilation by autotrophic bacteria is an important process in the soil carbon cycle with major environmental implications. The long-term impact of fertilizer on CO2 assimilation in the bacterial community of paddy soils remains poorly understood. To narrow this knowledge gap, the composition and abundance of CO2-assimilating bacteria were investigated using terminal restriction fragment length polymorphism and quantitative PCR of the cbbL gene [that encodes ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO)] in paddy soils. Soils from three stations in subtropical China were used. Each station is part of a long-term fertilization experiment with three treatments: no fertilizer (CK), chemical fertilizers (NPK), and NPK combined with rice straw (NPKM). At all of the stations, the cbbL-containing bacterial communities were dominated by facultative autotrophic bacteria such as Rhodopseudomonas palustris, Bradyrhizobium japonicum, and Ralstonia eutropha. The community composition in the fertilized soil (NPK and NPKM) was distinct from that in unfertilized soil (CK). The bacterial cbbL abundance (3–8?×?108 copies g soil?1) and RubisCO activity (0.40–1.76 nmol CO2 g soil?1 min?1) in paddy soils were significantly positively correlated, and both increased with the addition of fertilizer. Among the measured soil parameters, soil organic carbon and pH were the most significant factors influencing the community composition, abundance, and activity of the cbbL-containing bacteria. These results suggest that long-term fertilization has a strong impact on the activity and community of cbbL-containing bacterial populations in paddy soils, especially when straw is combined with chemical fertilizers.  相似文献   

12.
The importance of arbuscular mycorrhizae (AM) in plant and ecosystem responses to global changes, e.g. elevated atmospheric CO2, is widely acknowledged. Frequently, increases in AM root colonization occur in response to increased CO2, but also the lack of significant changes has been reported. The goal of this study was to test whether arbuscular mycorrhizae (root colonization and composition of root colonization) respond to plants grown in elevated CO2 as a function of soil depth. We grew Bromus hordeaceus L. and Lotus wrangelianus Fischer & C. Meyer monocultures in large pots with a synthetic serpentine soil profile for 4 yr in an experiment, in which CO2 concentration was crossed factorially with NPK fertilization. When analyzing root infection separately for topsoil (0–15 cm) and subsoil (15–45 cm), we found large (e.g., about 5-fold) increases of AM fungal root colonization in the subsoil in response to CO2, but no significant changes in the corresponding topsoil of Bromus. Only the coarse endophyte AM fungi, not the fine endophyte AM fungi, were responsible for the observed increase in the bottom soil layer, indicating a depth-dependent shift in the AM community colonizing the roots, even at this coarse morphological level. Other response variables also had significant soil layer * CO2 interaction terms. The subsoil response would have been hidden in an unstratified assessment of the total root system, since most of the root length was concentrated in the top soil layer. The increased presence of mycorrhizae in roots deeper in the soil should be considered in sampling protocols, as it may be indicative of changed patterns of nutrient acquisition and carbon sequestration.  相似文献   

13.
Sequestration of CO2 by autotrophic bacteria is a key process of biogeochemical carbon cycling in soil ecosystem. Rhizosphere is a rich niche of microbial activity and diversity, influenced by change in atmospheric CO2. Structural changes in rhizosphere composition influence microbial communities and the nutrient cycling. In the present study, the bacterial diversity and population dynamics were established using cbbL and 16S rRNA gene targeted metagenomics approach from the rhizosphere of Arachis hypogaea. A total of 108 cbbL clones were obtained from the rhizospheric soil which revealed predominance of cbbL sequences affiliated to Rhizobium leguminosarum, Bradyrhizobium sp., Sinorhizobium meliloti, Ochrobactrum anthropi and a variety of uncultured cbbL harboring bacteria. The 16S rRNA gene clone library exhibited the dominance of Firmicutes (34.4%), Proteobacteria (18.3%), Actinobacteria (17.2%) and Bacteroidetes (16.1%). About 43% nucleotide sequences of 16S rRNA gene clone library were novel genera which showed < 95% homology with published sequences. Gene copy number of cbbL and 16S rRNA genes, determined by quantitative real‐time PCR (qRT PCR), was 9.38 ± 0.75 × 107 and 5.43 ± 0.79 × 108 (per g dry soil), respectively. The results exhibited bacterial community structure with high bacterial diversity and abundance of CO2‐fixing bacteria, which can be explored further for their role in carbon cycling, sustainable agriculture and environment management.  相似文献   

14.
Gaseous conditions at natural CO2 springs (mofettes) affect many processes in these unique ecosystems. While the response of plants to extreme and fluctuating CO2 concentrations ([CO2]) is relatively well documented, little is known on microbial life in mofette soil. Therefore, it was the aim of this study to investigate the abundance and diversity of CO2-fixing bacteria in grassland soils in different distances to a natural carbon dioxide spring. Samples of the same soil type were collected from the Stavešinci mofette, a natural CO2 spring which is known for very pure CO2 emissions, at different distances from the CO2 releasing vents, at locations that clearly differed in soil CO2 efflux (from 12.5 to over 200 μmol CO2 m−2 s−1 yearly average). Bulk and rhizospheric soil samples were included into analyses. The microbial response was followed by a molecular analysis of cbbL genes, encoding for the large subunit of RubisCO, a carboxylase which is of crucial importance for C assimilation in chemolitoautotrophic microbes. In all samples analyzed, the “red-like” type of cbbL genes could be detected. In contrast, the “green-like” type of cbbL could not be measured by the applied technique. Surprisingly, a reduction of “red-like” cbbL genes copies was observed in bulk soil and rhizosphere samples from the sites with the highest CO2 concentrations. Furthermore, the diversity pattern of “red-like” cbbL genes changed depending on the CO2 regime. This indicates that only a part of the autotrophic CO2-fixing microbes could adapt to the very high CO2 concentrations and adverse life conditions that are governed by mofette gaseous regime. Urška Videmšek, Alexandra Hagn, Michael Schloter, and Dominik Vodnik contributed equally to this study.  相似文献   

15.
周婷婷  胡文革  钟镇涛  王月娥  陈婷  张雪 《生态学报》2022,42(13):5314-5327
旨在了解艾比湖湿地盐生植物盐角草根际与非根际中不同类型反硝化细菌的分布及其随季节变化情况,为温带干旱地区荒漠盐化生态系统的代表-艾比湖湿地在生态植被恢复过程中,由微生物推动的土壤氮素循环过程提供数据支撑。采集了艾比湖湿地夏、秋、春三个季节的盐角草根际和非根际土壤样本,通过高通量测序技术,比较分析了nirS-型和nirK-型两种类型的反硝化细菌的多样性和群落结构特点;利用RDA (redundancy analysis)探究了土壤理化因素对反硝化细菌多样性及群落结构的影响。艾比湖湿地盐角草根际与非根际中,nirS-型和nirK-型反硝化细菌多样性最高的为秋季根际土壤样本;各土壤样本中的反硝化细菌多样性均呈现根际>非根际。盐角草各土壤样本中的nirS-型反硝化细菌在门分类水平上隶属于变形菌门(Proteobacteria),厚壁菌门(Firmicutes)和放线菌门(Actinobacteria),而nirK-型反硝化细菌在门水平上分类仅包括了ProteobacteriaFirmicutesProteobacteria在各土壤样本中的占比均较高;其中Gamma-Proteobacteria的盐单胞菌属(Halomonas)和假单胞菌属(Pseudomonas)是各土壤样本所共有的nirS-型反硝化菌的优势菌属,但它们在每个土壤样本中的相对丰度各有差异。Alpha-Proteobacteria的根瘤菌属(Rhizobium)是盐角草各土壤样本中较为广泛存在的nirK-型反硝化细菌。艾比湖湿地盐角草各土壤样本中的反硝化细菌群落结构存在着一定的差异。RDA结果显示含水量、有机质、全氮和铵态氮等对各土壤样本中的nirS-型反硝化细菌的多样性影响较大,含水量、有机质、全氮、碱解氮等是nirK-型反硝化细菌多样性的主要影响因素。土壤电导率、全磷、全钾、全氮和碱解氮协同影响nirS-型反硝化细菌的群落结构,有机质、速效钾、速效磷、pH和硝态氮是nirK-型反硝化细菌群落结构组成的主要影响因素。艾比湖湿地反硝化细菌呈现季节性变化,nirS-型和nirK-型反硝化细菌以不同的主要菌属,共同推进湿地反硝化作用。而对于湿地生态系统的保护,则需要进行长期而广泛的土壤状态评估和土壤反硝化微生物菌群的动态监测。  相似文献   

16.
王文晓  李小伟  黄文广  杨君珑 《生态学报》2020,40(23):8660-8671
蒙古沙冬青(Ammopiptanthus mongolicus)是中国西北荒漠唯一的常绿阔叶灌木,耐干旱、抗逆性强,在水土和荒漠化防治方面发挥着重要作用。为了探究蒙古沙冬青根际微生物多样性与生态因子互作机制,采用高通量测序技术测定了26个自然种群根际土壤细菌多样性;利用冗余分析(Redundancy analysis,RDA)探讨了根际细菌群落组成和多样性与生态因子之间的关系。结果表明:蒙古沙冬青根际土壤细菌隶属于15门、43纲、68目、123科、185属;主要优势细菌群为蓝菌门(Cyanobacteria)65.74%、变形菌门(Proteobacteria)21.72%、放线菌门(Actinobacteria)6.28%(相对丰度>2%);优势菌纲为α-变形菌纲(Alphaproteobacteria)17.48%、放线菌纲(Actinobacteria)4.76%、γ-变形菌纲(Gammaproteobacteria)3.28%。RDA分析显示:生态因子能够解释蒙古沙冬青根际土壤细菌群落多样性52.69%的方差,其中年均降雨量(F=12.8,P=0.002)、纬度(F=5.1,P=0.016)、太阳辐射(F=5,P=0.02)是影响土壤细菌多样性的主要因素。研究结果可为深入认识荒漠生态系统中根际土壤细菌的群落结构和影响因素提供理论依据。  相似文献   

17.
【目的】研究新疆艾比湖湿地不同季节盐角草根际和非根际土壤固氮微生物的多样性和丰富度与环境因子的相关性,以期探究在荒漠化和盐渍化不断严重的艾比湖湿地中随着季节变化的固氮微生物群落对恢复生态功能起到的潜在作用,为后续的湿地保护和退化恢复工作提供理论支持和数据基础。【方法】应用Illumina HiSeq PE250测序技术,分析6个土壤样本固氮微生物的多样性,结合相关的理化因子并利用RDA分析法探究土壤理化性质和固氮微生物菌落结构及丰富度的相关性。【结果】艾比湖湿地盐角草植物根际土壤的固氮微生物多样性高于非根际土壤,7月的土壤固氮微生物多样性高于10月和4月的土壤。土杆菌属(Geobacter)、假单胞菌属(Pseudomonas)、固氮菌属(Azotobacter)和慢生根瘤菌属(Bradyrhizobium)等为盐角草根际和非根际土壤中的共同优势菌属。这些固氮微生物优势菌属隶属于变形菌门(Proteobacteria)和蓝藻门(Cyanobacteria),且相对丰富度占比为85%和10%,其余各菌门共占比较少,仅为5%。土壤中固氮微生物的优势菌群与碱解氮(AN)、全氮(TN)、速效钾(AK)和有效磷(TP)呈显著相关。【结论】随着时间的推移土壤样本中固氮微生物的多样性和群落结构也发了改变,同一时期植物根际与非根际土壤中固氮微生物的群落结构并不相同。土壤的环境因子与固氮细菌的群落结构和丰富度的相关性研究可以为艾比湖湿地的退化恢复提供数据基础和理论支持。  相似文献   

18.
The capability to reassimilate CO2 originating from intracellular decarboxylating processes connected with the photorespiratory glycolate pathway and-or decarboxylation of C4 acids during C4 photosynthesis has been investigated with four species of the genus Flaveria (Asteraceae). The C3-C4 intermediate species F. pubescens and F. anomala reassimilated CO2 much more efficiently than the C3 species F. cronquistii and, with respect to this feature, behaved similarly to the C4 species F. trinervia. Therefore, under atmospheric conditions the intermediate species photorespired with rates only between 10–20% of that measured with F. cronquistii. At low oxygen concentrations (1,5%) the reassimilation potential of F. anomala approached that of F. trinervia and was distinct from that found with F. pubescens. The data are discussed with respect to a possible sequence of events during evolution of C4 photosynthesis. If compared with related data for C3-C4 intermediate species from other genera they support the hypothesis that, during evolution of C4 photosynthesis, an efficient capacity for CO2 reassimilation evolved prior to a CO2-concentrating mechanism.Abbreviations C3, C4 assimilated CO2 initially found in 3-phosphoglycerate (C3) or malate and aspartate (C4) - D reassimilation coefficient - R n , R t net, total CO2 evolution as measured with 0.03 and 3% CO2, respectively - RuBP ribulose-1,5-bisphosphate - TPS true photosynthesis  相似文献   

19.
呼和浩特市大青山白桦根际土壤细菌群落结构研究   总被引:6,自引:2,他引:4  
高秀宏  李敏  卢萍  吕桂芬  牛艳芳 《生态学报》2019,39(10):3586-3596
采用高通量测序技术对天然次生林生态系统演替过程中先锋树种白桦的根际土壤细菌多样性及群落结构进行了分析。研究结果表明:白桦根际土壤细菌隶属于28门、90纲、126目、213科、286属,在3个采样地中排名前8的优势细菌门的相对丰度均大于1%,分别为变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)、芽单胞菌门(Gemmatimonadetes)、绿弯菌门(Chloroflexi)、硝化螺旋菌门(Nitrospirae)、疣微菌门(Verrucomicrobia)和拟杆菌门(Bacteroidetes)。各样地中前3个门的相对丰度之和均在60%以上。对白桦根际土壤细菌的α多样性指数、门水平的聚类热图以及PCoA聚类结果的分析表明,3个采样地中,小井沟(B2)和哈达门森林公园(C2)白桦根际土壤细菌的物种组成更为接近,与井儿梁(A2)的物种组成有一定差异;且小井沟和哈达门森林公园的物种多样性及丰度(ACE指数)显著高于井儿梁,表明细菌对不同环境的适应能力有明显差异。对细菌群落结构与土壤理化性质的RDA分析及相关性分析表明,环境因子对白桦根际土壤细菌的影响顺序为:全氮TN酸碱度pH含水量WC速效钾AK硝态氮NN铵态氮AN有机质OM有效磷EP,其中,TN、pH和WC是白桦根际土壤优势细菌的主要影响因子。研究结果为深入认识森林生态系统中根际土壤细菌的群落结构和影响因子提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号