首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
在极端干旱区(敦煌)以泡泡刺群落为研究对象,测定了生长季内增雨对泡泡刺群落灌丛和裸地土壤呼吸温度敏感性(Q_(10))的影响。结果表明:增雨明显增加了裸地的Q_(10),但未能显著改变灌丛的Q_(10)与对照相比,增雨16 mm使裸地Q_(10)显著增加28%,达1.83±0.30;在整个生长季,裸地和灌丛的Q_(10)季节波动与土壤含水量的变化存在极显著相关关系,且裸地的Q_(10)对土壤水分的敏感性(1.94)高于灌丛(1.57)。  相似文献   

2.
环境DNA metabarcoding及其在生态学研究中的应用   总被引:10,自引:0,他引:10  
陈炼  吴琳  刘燕  徐海根 《生态学报》2016,36(15):4573-4582
环境DNA metabarcoding(eDNA metabarcoding)是指利用环境样本(如土壤、水、粪便等)中分离的DNA进行高通量的多个物种(或高级分类单元)鉴定的方法。近年来,该方法引起了学者的广泛关注,逐渐应用于生物多样性研究、水生生物监测、珍稀濒危物种和外来入侵物种检测等生态学领域。介绍环境DNA metabarcoding的含义和研究方法;重点介绍环境DNA metabarcoding在物种监测、生物多样性研究和食性分析等生态学领域中的应用;总结环境DNA metabarcoding应用于生态学研究领域面临的挑战并对该方法的发展进行展望。  相似文献   

3.
土壤呼吸(Rs)由自养呼吸(Ra)和异养呼吸(Rh)组成,这两个组分温度敏感性的差异性存在较大争议,而根际激发效应对R_h呼吸速率及其温度敏感性(Q10)的影响导致这一问题更为复杂化。本研究采用~(13)C自然丰度法,将中国北方温带次生林的重要建群树种C_3植物五角槭种植于曾经连续23年种植玉米的C_4土壤中,以此区分R-a和R_h,并探讨R_a和R_h温度敏感性的差异性以及根际激发效应对R_h呼吸速率和Q_(10)的影响。结果表明:植物根系对R_h呼吸速率有负激发效应,并降低了R_h的温度敏感性;植树土壤的R_h比不植树土壤的无根异养呼吸(Rhf)降低了34.3%,R_h的Q_(10)值(1.51)也显著低于R_(hf)的Q_(10)值(2.07),而Ra的Q_(10)值(3.89)是R_h的Q_(10)值的2.5倍;因此,未来研究在区分R_a和R_h呼吸速率和温度敏感性时,应该考虑根际激发效应对R_h及其温度敏感性的影响,这对于精确评估和模型模拟气候变化背景下R_s的变化和响应具有重要意义。  相似文献   

4.
选择中亚热带毛竹人工林为研究对象,利用野外原位和室内培养相结合的方法,探讨不同间伐强度(25%间伐、50%间伐)和林下植被剔除对土壤氮矿化速率及其温度敏感性的影响。结果表明,25%间伐显著增加土壤氨化速率(P0.01),但降低硝化速率(P0.01);50%间伐显著增加土壤硝化速率(P0.01),而林下植被剔除显著降低土壤硝化速率(P0.01)。相关分析的结果表明,土壤氨化速率与有机碳(SOC)、全氮(TN)及全磷(TP)含量呈显著负相关关系;硝化速率与SOC、含水量(SWC)呈显著正相关关系,与铵态氮(NH~+_4-N)含量呈显著负相关关系。随着温度的升高,不同处理下的氨化速率均显著增加(P0.01),而硝化速率显著降低(P0.01)。25%间伐显著降低土壤净氮矿化和氨化过程的Q_(10)值,对硝化过程的Q_(10)值影响不显著;50%间伐对氨化和硝化过程的Q_(10)值影响均不显著;林下植被剔除对氨化过程的Q_(10)值影响不显著,但显著增加硝化过程的Q_(10)值。不同处理下的土壤氮矿化过程的Q_(10)值介于1.17—1.36之间。25%间伐和林下植被保留有利于毛竹林土壤氮素的供给。  相似文献   

5.
人类活动导致氮和磷输入到草原生态系统,对土壤有机碳循环产生影响,但是土壤微生物呼吸(Soil microbial respiration,Rs)及其温度敏感性(Q_(10))对于氮沉降和磷有效性增加的响应还存在争议。因此,依托多伦草原氮添加样地(0、50 kg N hm~(-2) a~(-1)和100 kg N hm~(-2) a~(-1)),并添加磷进行室内恒温培养(10℃和15℃),研究氮添加和磷有效性增加对Rs及其Q_(10)的影响。结果发现:氮添加显著降低胞壁酸含量和显著增加真菌丰富度(Fungal richness, F-richness)。与N0处理相比,N50和N100处理使累积呼吸量显著降低了61.2%和67.1%,但Q_(10)显著升高了32.7%和50.8%;磷有效性增加没有对累积呼吸量及其Q_(10)产生显著影响。逐步回归结果表明,F-richness和pH值分别是累积呼吸量及其Q_(10)最重要的影响因子。研究表明氮添加抑制Rs,减少土壤有机碳损失,但增加气候变暖对多伦草原土壤有机碳分解的影响,在全球变暖背景下增加土壤有机碳排放的不确定性。  相似文献   

6.
阳小成  阿舍小虎  苗原  刘银占 《生态学报》2016,36(17):5371-5378
采用土壤二氧化碳(CO_2)通量自动测量系统,对不同放牧模式(全年禁牧、夏季放牧、冬季放牧和自由放牧)下川西北高寒草甸的土壤呼吸进行监测,比较了不同放牧模式下土壤呼吸的季节动态和温度敏感性。研究发现:1)放牧模式可以改变高寒草甸土壤呼吸的季节动态变化。禁牧、夏季放牧以及自由放牧样地的土壤呼吸在季节上的变化趋势基本相似,而冬季放牧样地的土壤呼吸最大值与前者相比明显向后推迟;2)放牧模式并不改变高寒草甸年平均土壤呼吸速率,但对不同季节土壤呼吸速率的影响不同;3)不同放牧模式可以改变土壤呼吸对温度的敏感性(Q_(10))。不同放牧模式下土壤呼吸Q_(10)值大小依次为:禁牧1a(8.13)冬季放牧(7.49)禁牧3a(5.46)夏季放牧(5.20)自由放牧(4.53)。该地区土壤呼吸的Q_(10)值均明显高于热带和其它温带草地土壤呼吸的Q_(10)值。结果表明,放牧模式是影响高寒草甸土壤碳排放的一个重要因素。此外,在未来全球气候变暖背景下,在生长季节无放牧干扰的高寒草甸可能比放牧干扰的高寒草甸释放出更多的CO_2到大气中。  相似文献   

7.
辅酶Q_(10)在医药、食品和化妆品等行业应用广泛。发酵法生产辅酶Q_(10)成本较低,但要实现工业化,需进一步提高菌株的产量。通过诱变方法获取产量和稳定性较为理想的菌株具有较强的现实意义。本文中,笔者以根癌土壤杆菌(Rhizobium radiobacter)为出发菌株,经紫外线和离子束双重诱变,并结合抗性筛选获得3株高产辅酶Q_(10)的菌株K-53、Q-18和Y80-58-2,所得菌株辅酶Q_(10)产量均较稳定,与出发菌株相比产量分别提高了58.7%、64.4%和66.1%,其中Y80-58-2产量达105.8 mg/L。本研究结果对工业化生产辅酶Q_(10)具有一定的帮助。  相似文献   

8.
研究模拟氮沉降增加对土壤呼吸温度敏感性的影响可以降低全球变化条件下土壤碳收支评估的不确定性。本研究用meta分析方法探讨了模拟氮沉降增加对中国陆地生态系统土壤呼吸温度敏感性(Q_(10))的影响。结果发现:模拟氮沉降增加整体上对Q_(10)影响不显著(0.49%),但显著降低了高原气候带生态系统Q_(10)(16.32%),显著增加了沼泽Q_(10)(38.19%)。效应大小与试验模拟的氮沉降量有一定关系,模拟氮沉降量小于50 kg·hm~(-2)·a~(-1)时Q_(10)增加2.59%,模拟氮沉降量为50~150和大于150 kg·hm~(-2)·a~(-1)时Q_(10)分别降低4.33%和1.61%。使用只含硝态氮的氮肥显著增加了Q_(10)(34.33%),而施加尿素的生态系统Q_(10)则显著降低(8.11%)。模拟氮沉降的时间超过15个月显著降低Q_(10)(19.24%)。模拟氮沉降影响土壤呼吸温度敏感性可能是由于氮通过影响土壤养分而影响了根系和土壤微生物的新陈代谢,进而影响土壤呼吸,使土壤呼吸对温度的敏感性不同。  相似文献   

9.
沉积物氮形态与测定方法研究进展   总被引:8,自引:0,他引:8  
刘波  周锋  王国祥  许宽  杜旭  凌芬  夏劲 《生态学报》2011,31(22):6947-6958
长期以来,国内外学者对沉积物中氮进行了大量的研究,在氮生物地球化学循环和生态学效应方面取得了重要进展.然而,现有关于氮赋存形态的研究主要集中在总氮和无机氮方面,还不能深入阐明沉积物氮的生物和生态学机制.分析了沉积物和土壤氮赋存形态划分和测定方法的研究进展,研究表明:沉积物氮的形态划分与测定方法基本上还是借鉴了土壤氮的研究方法;无机态氮的研究多集中在可交换态氮方面,对固定铵的研究相对较少;在可交换态氮提取方法上并没有针对沉积物与土壤的差异进行必要的论证和改进,沉积物中可溶态氮对可交换态氮测定的影响还不明确;有机氮的测定方法基本上是经验方法,目前还无针对有机氮生态学效应的分类及测定方法;连续分级浸提方法从生态学效应的角度对沉积物氮的研究进行了有益的探索,为深入揭示氮的生态学机制提供了新的思路,但是此类方法目前还集中在国内学者的相关研究中.  相似文献   

10.
朱晶莹 《生态学报》2014,34(15):4454-4459
为促进中国青年生态学者与海外生态学者的交流与合作,由中国生态学学会、中华海外生态学者协会和国际青年学者论坛委员会联合举办的第五届国际青年生态学者论坛,于2014年5月16日至18日在河南大学(开封)顺利召开。围绕"如何设计与开展现代生态学研究"的主题,本届论坛的科学议题包含了以下五个方面:(1)如何设计现代生态学的研究;(2)生态学不同领域的研究方法;(3)针对不同生态学问题所采用的数据分析方法;(4)撰写生态学领域研究项目申请书方面的成功经验交流;(5)英文论文写作过程中的注意事项,传授提高生态学英文论文写作能力的经验和技巧。国际青年生态学者论坛促进了青年生态学者与国际专家的交流,对我国生态学科的发展和生态学人才的成长具有重要意义。  相似文献   

11.
Several studies have shown multiple confounding factors influencing soil respiration in the field, which often hampers a correct separation and interpretation of the different environmental effects on respiration. Here, we present a controlled laboratory experiment on undisturbed organic and mineral soil cores separating the effects of temperature, drying–rewetting and decomposition dynamics on soil respiration. Specifically, we address the following questions:
  • 1 Is the temperature sensitivity of soil respiration (Q10) dependent on soil moisture or soil organic matter age (incubation time) and does it differ for organic and mineral soil as suggested by recent field studies.
  • 2 How much do organic and mineral soil layers contribute to total soil respiration?
  • 3 Is there potential to improve soil flux models of soil introducing a multilayer source model for soil respiration?
Eight organic soil and eight mineral soil cores were taken from a Norway spruce (Picea abies) stand in southern Germany, and incubated for 90 days in a climate chamber with a diurnal temperature regime between 7 and 23°C. Half of the samples were rewetted daily, while the other half were left to dry and rewetted thereafter. Soil respiration was measured with a continuously operating open dynamic soil respiration chamber system. The Q10 was stable at around 2.7, independent of soil horizon and incubation time, decreasing only slightly when the soil dried. We suggest that recent findings of the Q10 dependency on several factors are emergent properties at the ecosystem level, that should be analysed further e.g. with regard to rhizosphere effects. Most of the soil CO2 efflux was released from the organic samples. Initially, it averaged 4.0 μmol m?2 s?1 and declined to 1.8 μmol m?2 s?1 at the end of the experiment. In terms of the third question, we show that models using only one temperature as predictor of soil respiration fail to explain more than 80% of the diurnal variability, are biased with a hysteresis effect, and slightly underestimate the temperature sensitivity of respiration. In contrast, consistently more than 95% of the diurnal variability is explained by a dual‐source model, with one CO2 source related to the surface temperature and another CO2 source related to the central temperature, highlighting the role of soil surface processes for ecosystem carbon balances.  相似文献   

12.
Large seasonal changes in Q10 of soil respiration in a beech forest   总被引:1,自引:0,他引:1  
We analyzed one year of continuous soil respiration measurements to assess variations in the temperature sensitivity of soil respiration at a Danish beech forest. A single temperature function derived from all measurements across the year (Q10 = 4.2) was adequate for estimating the total annual soil respiration and its seasonal evolution. However, Q10's derived from weekly datasets ranged between three in summer (at a mean soil temperature of 14 °C) and 23 in winter (at 2 °C), indicating that the annual temperature function underestimated the synoptic variations in soil respiration during winter. These results highlight that empirical models should be parameterized at a time resolution similar to that required by the output of the model. If the objective of the model is to simulate the total annual soil respiration rate, annual parameterization suffices. If however, soil respiration needs to be simulated over time periods from days to weeks, as is the case when soil respiration is compared to total ecosystem respiration during synoptic weather patterns, more short‐term parameterization is required. Despite the higher wintertime Q10's, the absolute response of soil respiration to temperature was smaller in winter than in summer. This is mainly because in absolute numbers, the temperature sensitivity of soil respiration depends not only on Q10, but also on the rate of soil respiration, which is highly reduced in winter. Nonetheless, the Q10 of soil respiration in winter was larger than can be explained by the decreasing respiration rate only. Because the seasonal changes in Q10 were negatively correlated with temperature and positively correlated with soil moisture, they could also be related to changing temperature and/or soil moisture conditions.  相似文献   

13.
Ectomycorrhizal (ECM) fungi contribute significantly to ecosystem respiration, but little research has addressed the effect of temperature on ECM fungal respiration. Some plants have the ability to acclimate to temperature such that long‐term exposure to warmer conditions slows respiration at a given measurement temperature and long‐term exposure to cooler conditions increases respiration at a given measurement temperature. We examined acclimation to temperature and temperature sensitivity (Q10) of respiration by ECM fungi by incubating them for a week at one of three temperatures and measuring respiration over a range of temperatures. Among the 12 ECM fungal isolates that were tested, Suillus intermedius, Cenococcum geophilum, and Lactarius cf. pubescens exhibited significant acclimation to temperature, exhibiting an average reduction in respiration of 20–45% when incubated at 23 °C compared with when incubated at 11 or 17 °C. The isolates differed significantly in their Q10 values, which ranged from 1.67 to 2.56. We also found that half of the isolates significantly increased Q10 with an increase in incubator temperature by an average of 15%. We conclude that substantial variation exists among ECM fungal isolates in their ability to acclimate to temperature and in their sensitivity to temperature. As soil temperatures increase, ECM fungi that acclimate may require less carbon from their host plants than fungi that do not acclimate. The ability of some ECM fungi to acclimate may partially ameliorate the anticipated positive feedback between soil respiration and temperature.  相似文献   

14.
Microorganisms drive soil carbon mineralization and changes in their activity with increased temperature could feedback to climate change. Variation in microbial biodiversity and the temperature sensitivities (Q10) of individual taxa may explain differences in the Q10 of soil respiration, a possibility not previously examined due to methodological limitations. Here, we show phylogenetic and taxonomic variation in the Q10 of growth (5–35 °C) among soil bacteria from four sites, one from each of Arctic, boreal, temperate, and tropical biomes. Differences in the temperature sensitivities of taxa and the taxonomic composition of communities determined community-assembled bacterial growth Q10, which was strongly predictive of soil respiration Q10 within and across biomes. Our results suggest community-assembled traits of microbial taxa may enable enhanced prediction of carbon cycling feedbacks to climate change in ecosystems across the globe.Subject terms: Biogeochemistry, Ecosystem ecology, Soil microbiology  相似文献   

15.
16.
We present a new soil respiration model, describe a formal model testing procedure, and compare our model with five alternative models using an extensive data set of observed soil respiration. Gas flux data from rangeland soils that included a large number of measurements at low temperatures were used to model soil CO2 emissions as a function of soil temperature and water content. Our arctangent temperature function predicts that Q10 values vary inversely with temperature and that CO2 fluxes are significant below 0 °C. Independent data representing a broad range of ecosystems and temperature values were used for model testing. The effects of plant phenology, differences in substrate availability among sites, and water limitation were accounted for so that the temperature equations could be fairly evaluated. Four of the six tested models did equally well at simulating the observed soil CO2 respiration rates. However, the arctangent variable Q10 model agreed closely with observed Q10 values over a wide range of temperatures (r2 = 0.94) and was superior to published variable Q10 equations using the Akaike information criterion (AIC). The arctangent temperature equation explained 16–85% of the observed intra-site variability in CO2 flux rates. Including a water stress factor yielded a stronger correlation than temperature alone only in the dryland soils. The observed change in Q10 with increasing temperature was the same for data sets that included only heterotrophic respiration and data sets that included both heterotrophic and autotrophic respiration.  相似文献   

17.
土壤碳矿化(或土壤异养呼吸)的温度敏感性和激发效应是深入揭示土壤呼吸控制机理及其对未来气候变化响应与适应的重要研究方向。该文以自由放牧(FG0)、封育11年(FG11)、封育31年(FG31)的羊草(Leymus chinensis)草地为研究对象, 通过0、5、10、15、20、25 ℃培养, 探讨了封育对羊草草地土壤碳矿化激发效应和温度敏感性的影响。结果表明: 封育年限、添加葡萄糖、培养温度和培养时间对土壤碳矿化速率均具有显著的影响, 不同因素间存在显著的交互效应(p < 0.000 1)。FG0的羊草草地土壤碳矿化累积量显著高于FG11和FG31的, 在添加葡萄糖处理下也呈现相同的趋势。长期封育降低了羊草草地土壤碳矿化的激发效应。在添加葡萄糖后, 培养前7天的土壤碳矿化的激发效应随温度增加而增加, 增加2.28-9.01倍; 在整个56天培养期间, 激发效应介于2.21-5.10倍, 最高值出现在10或15 ℃。土壤碳矿化速率可用经典的指数方程来表示, FG0草地的土壤碳矿化的温度敏感性指数(Q10)大于长期封育草地(FG11和FG31); 与未添加处理相比, 添加葡萄糖显著增加了土壤碳矿化速率的温度敏感性, 即在添加葡萄糖后土壤微生物呼吸受温度的影响更大。长期封育会降低羊草草地土壤的碳矿化速率、温度敏感性和激发效应, 从而降低土壤碳周转速率和释放速率, 使内蒙古地区长期封育草地仍然具有碳固持能力。  相似文献   

18.
树干呼吸(E_s)是森林生态系统碳循环过程的重要组成部分,深入理解树干呼吸过程对未来气候变暖的响应及反馈机制有助于更加精确地估算森林生态系统碳储量。为揭示毛白杨树干呼吸及其温度敏感性的昼夜变化和季节动态规律,利用Li-Cor6400便携式光合作用测定系统及其配套使用的土壤呼吸测量气室(LI-6400-09)对冀南平原区毛白杨的树干呼吸和树干温度实施为期1年的连续监测。结果表明:(1)在生长季,毛白杨树干呼吸与树干温度之间在晚上呈现正相关的关系(R~2=0.88);相反,两者在白天为负相关的关系(R~2=0.96)。(2)整个观测期内,毛白杨树干呼吸和树干温度均呈现"钟形"的变化曲线,树干呼吸与树干温度之间存在着较好的指数函数关系(R~2=0.93),且树干呼吸的温度敏感性系数(Q_(10))为2.62;不同季节毛白杨树干呼吸的Q_(10)存在差异,生长季的Q_(10)(1.95)明显低于非生长季(3.00),表明生长呼吸和维持呼吸对温度的响应也并不相同。(3)温度矫正后的毛白杨树干呼吸(R_(15))在昼夜和季节尺度上均存在明显的变异,即夜晚的R_(15)显著高于白天(P0.01),生长季的R_(15)明显高于非生长季(P0.05);树干可溶性糖含量与生长季的R_(15)存在较好的相关性(R~2=0.52),而非生长季的R_(15)却主要受到树干淀粉含量的影响。研究结果表明,在生长季,毛白杨树干呼吸的在日变化主要受到温度的影响,而在季节尺度上Q_(10)的变异则与树干呼吸中维持呼吸所占比例及树干中非结构性碳水化合物(可溶性糖和淀粉)的含量及类型紧密相关。  相似文献   

19.
How to assess the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5–30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q10. The general negative relationships between Q10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q10, were predicted to be more sensitive to climate change under the scenario of global warming.  相似文献   

20.
This study compares approximately weekly soil respiration across two forest–pasture pairs with similar soil, topography and climate to document how conversion of pasture to forest alters net soil CO2 respiration. Over the 2.5 year period of the study, we found that soil respiration was reduced by an average of 41% with conversion of pasture to forest on an annual basis. Both pastured sites showed similar annual soil respiration rates. Comparisons of the paired forests, one coniferous and the other broadleaf, only showed a significant difference over one annual cycle. Enhanced soil respiration in pastures may be the result of either enhanced root respiration and/or microbial respiration. Differences in pasture–forest soil respiration were primarily observed during the July through September summer period at all sites, suggesting that this is the critical period for observing and documenting differences. Evaluation of the soil microclimatic controls on soil respiration suggest that soil temperature exerts a major control on this process, and that examining these relationships on a seasonal rather than weekly basis provides the strongest relationships in poorly drained soils. Consistently greater pastured site Q 10s (2.52;2.42) than forested site Q 10s (2.27; 2.17) were observed, with paired-site differences of 0.25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号