首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frontotemporal dementias (FTDs), including corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), are neurodegenerative tauopathies characterized by widespread CNS neuronal and glial tau pathologies, but there are no tau transgenic (Tg) mice that model neurodegeneration with glia tau lesions. Thus, we generated Tg mice overexpressing human tau in neurons and glia. No neuronal tau aggregates were detected, but old mice developed Thioflavin S- and Gallyas-positive glial tau pathology resembling CBD astrocytic plaques. Tau-immunoreactive and Gallyas-positive oligodendroglial coiled bodies (similar to CBD and PSP), glial degeneration, and motor deficits were associated with age-dependent accumulations of insoluble hyperphosphorylated human tau and tau immunopositive filaments in degenerating glial cells. Thus, tau-positive glial lesions similar to human FTDs occur in these Tg mice, and these pathologies are linked to glial and axonal degeneration.  相似文献   

2.
Autophagy, including mitophagy, is critical for neuroprotection in traumatic brain injury (TBI). Transplantation of mesenchymal stem cells (MSCs) provides neuroprotection and induces autophagy by increasing anti‐inflammatory cytokines, such as interleukin‐10 (IL‐10). To evaluate these effects of IL10 that are released by MSCs, we genetically engineered MSCs to overexpress IL10 and compared their effects to unaltered MSCs following transplantation near the site of induced TBIs in rats. Adult, male Sprague‐Dawley rats were divided into four groups: Sham + vehicle, TBI + vehicle, TBI + MSCs‐IL‐10 and TBI + MSCs‐GFP. Thirty‐six hours post‐TBI, the first two groups received vehicle (Hanks balance salt solution), whereas last two groups were transplanted with MSCs‐IL‐10 or MSCs‐GFP. Three weeks after transplantation, biomarkers for neurodegenerative changes, autophagy, mitophagy, cell death and survival markers were measured. We observed a significant increase in the number of dead cells in the cortex and hippocampus in TBI rats, whereas transplantation of MSCs‐IL‐10 significantly reduced their numbers in comparison to MSCs alone. MSCs‐IL‐10 rats had increased autophagy, mitophagy and cell survival markers, along with decreased markers for cell death and neuroinflammation. These results suggest that transplantation of MSCs‐IL‐10 may be an effective strategy to protect against TBI‐induced neuronal damage.  相似文献   

3.
4.
Many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) are linked to the accumulation of specific protein aggregates in affected regions of the nervous system. SOD1, TDP‐43, FUS and optineurin (OPTN) proteins were identified to form intraneuronal inclusions in ALS patients. In addition, mutations in OPTN are associated with both ALS and glaucoma. As the pathological role of OPTN in neuronal degeneration remains unresolved, we created a yeast model to study its potential for aggregation and toxicity. We observed that both wild type and disease‐associated mutants of OPTN form toxic non‐amyloid aggregates in yeast. Similar to reported cell culture and mouse models, the OPTN E50K mutant shows enhanced toxicity in yeast, implying a conserved gain‐of‐function mechanism. Furthermore, OPTN shows a unique aggregation pattern compared to other disease‐related proteins in yeast. OPTN aggregates colocalize only partially with the insoluble protein deposit (IPOD) site markers, but coincide perfectly with the prion seed‐reducing protein Btn2 and several other aggregation‐prone proteins, suggesting that protein aggregates are not limited to a single IPOD site. Importantly, changes in the Btn2p level modify OPTN toxicity and aggregation. This study generates a mechanistic framework for investigating how OPTN may trigger pathological changes in ALS and other OPTN‐linked neurodegenerative disorders.  相似文献   

5.
Neurotrophins exert their physiological functions mainly through Trk receptors, and the neurotrophic signaling network is critical to the survival of neurons. However, therapeutic use of neurotrophins in treating neurodegenerative diseases is hampered by a number of pharmacological challenges, and the most significant challenge is their delivery into the central nervous system. Here, we reported that echinacoside, a small natural compound, elicits neuroprotection by activating Trk receptors and their downstream signal pathways. Echinacoside is the major active component of Cistanches Herba, a widely used Chinese herb with neuroprotective effects. We showed in this study that transient exposure to echinacoside is sufficient to protect neuronal cells and non‐neuronal cells over‐expressed with TrkA or TrkB against rotenone injury. Additional investigations on the mechanisms underlying suggested that transient treatment with echinacoside inhibits cytochrome c release and caspase‐3 activation caused by ensuing rotenone exposure via activating Trk‐extracellular signal‐regulated kinase (ERK) pathway in neuronal cells. As echinacoside is able to cross the blood–brain barrier freely, it may have a promising potential in neurodegenerative diseases treatment.  相似文献   

6.
Transplantation is common in clinical practice where there is availability of the tissue and organ. In the case of neurodegenerative disease such as Parkinson's disease (PD), transplantation is not possible as a result of the non‐availability of tissue or organ and therefore, cell therapy is an innovation in clinical practice. However, the availability of neuronal cells for transplantation is very limited. Alternatively, immortalized neuronal progenitors could be used in treating PD. The neuronal progenitor cells can be differentiated into dopaminergic phenotype. Here in this article, the current understanding of the molecular mechanisms involved in the differentiation of dopaminergic phenotype from the neuronal progenitors immortalized with SV40 LT antigen is discussed. In addition, the methods of generating dopaminergic neurons from progenitor cells and the factors that govern their differentiation are elaborated. Recent advances in cell‐therapy based transplantation in PD patients and future prospects are discussed.  相似文献   

7.
Progressive supranuclear palsy (PSP) is a neurodegenerative movement disorder of unknown etiology. We hypothesized that mitochondrial DNA (mtDNA) aberration could occur in this disease and contribute to its pathogenesis. To address this we created transmitochondrial cytoplasmic hybrid (cybrid) cell lines expressing mitochondrial genes from persons with PSP. The presence of cybrid mtDNA aberration was screened for by biochemical assay of mitochondrial gene products. Relative to a control cybrid set, complex I activity was reduced in PSP cybrid lines (p<0.005). Antioxidant enzyme activities were elevated in PSP cybrid lines. These data suggest that mtDNA aberration occurs in PSP, causes electron transport chain pathology, and can produce oxidative stress. Further study of mitochondrial dysfunction in PSP may yield insights into why neurodegeneration occurs in this disease.  相似文献   

8.
Mesenchymal stem cells (MSCs) can differentiate into neurons in an appropriate cellular environment. Retinoid signaling pathway is required in neural development. However, the effect and mechanism through retinoid signaling regulates neuronal differentiation of MSCs are still poorly understood. Here, we report that all‐trans‐retinoic acid (ATRA) pre‐induction improved neuronal differentiation of rat MSCs. We found that, when MSCs were exposed to different concentrations of ATRA (0.01–100 μmol/L) for 24 h and then cultured with modified neuronal induction medium (MNM), 1 μmol/L ATRA pre‐induction significantly improved neuronal differentiation efficiency and neural‐cell survival. Compared with MNM alone induced neural‐like cells, ATRA/MNM induced cells expressed higher levels of Nestin, neuron specific enolase (NSE), microtubule‐associated protein‐2 (MAP‐2), but lower levels of CD68, glial fibrillary acidic protein (GFAP), and glial cell line‐derived neurotrophic factor(GDNF), also exhibited higher resting membrane potential and intracellular calcium concentration, supporting that ATRA pre‐induction promotes maturation and function of derived neurons but not neuroglia cells from MSCs. Endogenous retinoid X receptors (RXR) RXRα and RXRγ (and to a lesser extent, RXRβ) were weakly expressed in MSCs. But the expression of RARα and RARγ was readily detectable, whereas RARβ was undetectable. However, at 24 h after ATRA treatment, the expression of RARβ, not RARα or RARγ, increased significantly. We further found the subnuclear redistribution of RARβ in differentiated neurons, suggesting that RARβ may function as a major mediator of retinoid signaling during neuronal differentiation from MSCs. ATRA treatment upregulated the expression of Vimentin and Stra13, while it downregulated the expression of Brachyury in MSCs. Thus, our results demonstrate that pre‐activation of retinoid signaling by ATRA facilitates neuronal differentiation of MSCs.  相似文献   

9.
MSCs (mesenchymal stem cells) derived from the bone marrow have shown to be a promising source of stem cells in a therapeutic strategy of neurodegenerative disorder. Also, MSCs can enhance the TH (tyrosine hydroxylase) expression and DA (dopamine) content in catecholaminergic cells by in vitro co‐culture system. In the present study, we investigated the effect of intrastriatal grafts of MSCs on TH protein and gene levels and DA content in adult intact rats. When MSCs were transplanted into the striatum of normal rats, the grafted striatum not only had significantly higher TH protein and mRNA levels, but also significantly higher DA content than the untransplanted striatum. Meanwhile, the grafted MSCs differentiated into neurons, astrocytes and oligodendrocytes; however, TH‐positive cells could not be detected in our study. These experimental results offer further evidence that MSCs are a promising candidate for treating neurodegenerative diseases such as Parkinson's disease.  相似文献   

10.
Mesenchymal stromal cells (MSCs) are promising candidates for the treatment of graft‐versus‐host and autoimmune diseases. Here, by virtue of their immunosuppressive effects, they are discussed to exhibit inhibitory actions on various immune effector cells, including T lymphocytes that promote the underlying pathology. While it becomes apparent that MSCs exhibit their therapeutic effect in a transient manner, they are usually transplanted from third party donors into heavily immunocompromised patients. However, little is known about potential late complications of persisting third party MSCs in these patients. We therefore analysed the effect of gamma irradiation on the potency and proliferation of MSCs to elucidate an irradiation dose, which would allow inhibition of MSC proliferation while at the same time preserving their immunosuppressive function. Bone marrow‐derived MSCs (BM‐MSCs) were gamma‐irradiated at increasing doses of 5, 10 and 30 Gy and subsequently assessed by colony formation unit (CFU)‐assay, Annexin V‐staining and in a mixed lymphocyte reaction, to assess colony growth, apoptosis and the immunosuppressive capacity, respectively. Complete loss of proliferative capacity measured by colony formation was observed after irradiation with a dose equal to or greater than 10 Gy. No significant decrease of viable cells was detected, as compared to non‐irradiated BM‐MSCs. Notably, irradiated BM‐MSCs remained highly immunosuppressive in vitro for at least 5 days after irradiation. Gamma irradiation does not impair the immunosuppressive capacity of BM‐MSCs in vitro and thus might increase the safety of MSC‐based cell products in clinical applications.  相似文献   

11.
Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into neuron-like cell, but the precise mechanisms controlling this process are unclear. We report here that LY294002, a small molecule inhibitor of PI3K/AKT signal pathway, can inhibit proliferation and promote neuronal differentiation of MSCs after MSCs incubated with LY294002 for 6 and 12 h. RT-PCR results indicated that mRNA expression of α5β1 integrin significantly increased in neuron-like cell from MSCs. Interestingly, neuron-like cells derived by this method adhere much more strongly than MSCs, which was related to the expression of α5β1 integrin and FAK phosphorylation. However, these effects could be attenuated by LiCL or GSK-3β-siRNA. Our results indicate that activation GSK-3β signaling may be involved in MSCs proliferation, differentiation, and adhesion. Furthermore, this study demonstrates that small molecule regulators of PI3K/AKT signaling may be valuable tools for stem cell research aimed at treatment of neurodegenerative disease.  相似文献   

12.
Parkinson's disease (PD) is a neurodegenerative disorder characterised by the loss of substantia nigra dopaminergic neurons that leads to a reduction in striatal dopamine (DA) levels. Replacing lost cells by transplanting dopaminergic neurons has potential value to repair the damaged brain. Salidroside (SD), a phenylpropanoid glycoside isolated from plant Rhodiola rosea, is neuroprotective. We examined whether salidroside can induce mesenchymal stem cells (MSCs) to differentiate into neuron‐like cells, and convert MSCs into dopamine neurons that can be applied in clinical use. Salidroside induced rMSCs to adopt a neuronal morphology, upregulated the expression of neuronal marker molecules, such as gamma neuronal enolase 2 (Eno2/NSE), microtubule‐associated protein 2 (Map2), and beta 3 class III tubulin (Tubb3/β‐tubulin III). It also increased expression of brain‐derived neurotrophic factor (BDNF), neurotrophin‐3 (NT‐3) and nerve growth factor (NGF) mRNAs, and promoted the secretion of these growth factors. The expression of dopamine neurons markers, such as dopamine‐beta‐hydroxy (DBH), dopa decarboxylase (DDC) and tyrosine hydroxylase (TH), was significantly upregulated after treatment with salidroside for 1–12 days. DA steadily increased after treatment with salidroside for 1–6 days. Thus salidroside can induce rMSCs to differentiate into dopaminergic neurons.  相似文献   

13.
Rett syndrome (RTT) is a neurodevelopmental disorder caused by MECP2 mutations. Previous studies performed on Mecp2-deficient brain showed striking changes in neuronal maturation. We recently showed that MeCP2 deficiency affects microtubule (MT) dynamics in RTT astrocytes. Here, we analyze MT stability in primary fibroblast cultures from patients with RTT syndrome and identify a significant decrease in stability compared to controls. Furthermore, we found that MT stability was reduced both in cells expressing the mutant or the wild-type allele in RTT fibroblasts, suggesting that mutated cells could damage wild-type ones through a non-cell-autonomous pathway. These results suggest that MeCP2 has a stabilizing role on MT dynamics and that its deficiency could lead to impaired MT stability that may explain in part the dendritic abnormalities observed in RTT brains.  相似文献   

14.
Age‐related cognitive decline and neurodegenerative diseases are associated with less functional neurogenic niches. It has been recently shown that aged subventricular zone (SVZ) suffers an infiltration of T cells, which affects neural stem cell activity in mice. Whether this occurs in human neurogenic niches or to which extent T‐cell infiltration is also taking place in neurodegenerative diseases remains unknown. In this work, we studied the presence of T cells in both human neurogenic niches in young and old individuals. There was a significant increase in the number of CD3+ and CD8+ T cells in the SVZ of elderly individuals, which was not detected in the dentate gyrus. Moreover, we also found CD3+ and CD8+ T cells in the SVZ of individuals with neurodegenerative diseases. However, T‐cell count was similar when compared non‐neuropathological elderly with disease diagnosed patients. Our study reveals the infiltration of T cells in old human brains, particularly in the SVZ under non‐pathological conditions and also in neurodegenerative contexts.  相似文献   

15.
The advent of super‐resolution microscopy allowed for new insights into cellular and physiological processes of normal and diseased cells. In this study, we report for the first time on the super‐resolved DNA structure of buccal cells from patients with Alzheimer's disease (AD) versus age‐ and gender‐matched healthy, non‐caregiver controls. In this super‐resolution study cohort of 74 participants, buccal cells were collected and their spatial DNA organization in the nucleus examined by 3D Structured Illumination Microscopy (3D‐SIM). Quantitation of the super‐resolution DNA structure revealed that the nuclear super‐resolution DNA structure of individuals with AD significantly differs from that of their controls (p < 0.05) with an overall increase in the measured DNA‐free/poor spaces. This represents a significant increase in the interchromatin compartment. We also find that the DNA structure of AD significantly differs in mild, moderate, and severe disease with respect to the DNA‐containing and DNA‐free/poor spaces. We conclude that whole genome remodeling is a feature of buccal cells in AD.  相似文献   

16.
Mesenchymal stem cells (MSCs) are multipotent cells that are able to differentiate into mesodermal lineages (osteogenic, adipogenic, chondrogenic), but also towards non-mesodermal derivatives (e.g. neural cells). Recent in vitro studies revealed that, in the absence of any kind of differentiation stimuli, undifferentiated MSCs express neural differentiation markers, but the literature data do not all concur. Considering their promising therapeutic potential for neurodegenerative diseases, it is very important to expand our knowledge about this particular biological property of MSCs. In this study, we confirmed the spontaneous expression of neural markers (neuronal, glial and progenitor markers) by undifferentiated human MSCs (hMSCs) and in particular, we demonstrated that the neuronal markers βIII-tubulin and NeuN are expressed by a very high percentage of hMSCs, regardless of the number of culture passages and the culture conditions. Moreover, the neuronal markers βIII-tubulin and NeuN are still expressed by hMSCs after in vitro osteogenic and adipogenic differentiation. On the other hand, chondrogenically differentiated hMSCs are negative for these markers. Our findings suggest that the expression of neuronal markers could be common to a wide range of cellular types and not exclusive for neuronal lineages. Therefore, the expression of neuronal markers alone is not sufficient to demonstrate the differentiation of MSCs towards the neuronal phenotype. Functional properties analysis is also required.  相似文献   

17.
Pathological tau proteins that constitute the basic matrix of neuronal inclusions observed in numerous neurodegenerative disorders are disease specific. This is mainly the consequence of the aggregation of specific sets of tau isoforms according to the diseases, i.e., six isoforms in Alzheimer's disease (AD) and exclusively the three tau isoforms lacking the corresponding sequence of exon 10 (E10-) in Pick's disease (PiD). By using antibodies specific to the different tau isoforms and one- and two-dimensional gel electrophoresis followed by western blots, we demonstrate herein a third group of neurodegenerative disorders characterized by intraneuronal inclusions exclusively constituted of tau isoforms containing the sequence corresponding to exon 10, progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Together, tau isoforms with exon 10 clearly differentiate three groups of neurodegenerative diseases: AD, PiD, and PSP/CBD. For each group, the neuropathological and clinical phenotypes are most likely related to specific sets of tau isoforms expressed by the vulnerable neuronal populations. The recently described mutations of the tau gene responsible for familial frontotemporal dementias also support this hypothesis.  相似文献   

18.
Two posttranslational modifications of alpha-tubulin, acetylation and detyrosination, are associated with stable microtubule (MT) populations, including those of neuronal processes. We have used a pluripotent embryonal carcinoma cell line, P19, to investigate changes in MT isotype and stability found in MT arrays during neurogenesis. This cell line has an advantage in that both commitment- and differentiation-related events can be observed. Uncommitted P19 cells have minimal arrays of acetylated and detyrosinated MTs. Following neuronal induction with retinoic acid (RA), indirect immunofluorescence microscopy shows that the first MT modifications occur during commitment and before any morphological change is observed. RA-induced cells initially polymerize a temporarily enlarged population of MTs. Included in this population is a new array of acetylated MTs arranged in a bundle of parallel MTs. This bundle is colchicine-stable, although no MT-associated proteins (MAPs) are detectable using a battery of anti-MAP antibodies. Observation of MT arrays with patterns that are intermediate between the early bundles and short neurites suggests that the acetylated MT bundle subsequently extends to form a neurite. MAP 2 is first detected at about the time of neurite extension. However, at this early stage of differentiation, MAP 2 is not yet limited to dendritic processes. This report provides the first evidence that the stable MTs of mature neurons may be initiated during neuronal commitment.  相似文献   

19.
In neurodegenerative diseases like Alzheimer's disease (AD), tau is hyperphosphorylated and forms aggregates and neurofibrillary tangles in affected neurons. Autophagy is critical to clear the aggregates of disease‐associated proteins and is often altered in patients and animal models of AD. Because mechanistic target of rapamycin (mTOR) negatively regulates autophagy and is hyperactive in the brains of patients with AD, mTOR is an attractive therapeutic target for AD. However, pharmacological strategies to increase autophagy by targeting mTOR inhibition cause various side effects. Therefore, autophagy activation mediated by non‐mTOR pathways is a new option for autophagy‐based AD therapy. Here, we report that pimozide activates autophagy to rescue tau pathology in an AD model. Pimozide increased autophagic flux through the activation of the AMPK‐Unc‐51 like autophagy activating kinase 1 (ULK1) axis, but not of mTOR, in neuronal cells, and this function was independent of dopamine D2 receptor inhibition. Pimozide reduced levels of abnormally phosphorylated tau aggregates in neuronal cells. Further, daily intraperitoneal (i.p.) treatment of pimozide led to a recovery from memory deficits of TauC3 mice expressing a caspase‐cleaved form of tau. In the brains of these mice, we found increased phosphorylation of AMPK1 and ULK1, and reduced levels of the soluble oligomers and NP40‐insoluble aggregates of abnormally phosphorylated tau. Together, these results suggest that pimozide rescues memory impairments in TauC3 mice and reduces tau aggregates by increasing autophagic flux through the mTOR‐independent AMPK‐ULK1 axis.  相似文献   

20.

Background  

Mesenchymal stem cells (MSCs) can be induced to differentiate into neuronal cells under appropriate cellular conditions and transplanted in brain injury and neurodegenerative diseases animal models for neuroregeneration studies. In contrast to the embryonic stem cells (ESCs), MSCs are easily subject to aging and senescence because of their finite ability of self-renewal. MSCs senescence seriously affected theirs application prospects as a promising tool for cell-based regenerative medicine and tissue engineering. In the present study, we established a reversible immortalized mesenchymal stem cells (IMSCs) line by using SSR#69 retrovirus expressing simian virus 40 large T (SV40T) antigen as an alternative to primary MSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号