首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
目的预测EB病毒gp125蛋白的B细胞表位。方法基于EB病毒gp125蛋白的氨基酸序列,采用亲水性参数、可及性参数、极性参数和抗原性指数方案等,辅以对gp125蛋白的二级结构中的柔性区域的分析,预测gp125蛋白的B细胞表位。结果最有可能的B细胞表位位于gp125蛋白N端第403-416、565—574、578—584、618-630和832—843区段及其附近。结论用多参数预测EB病毒gp125蛋白的B细胞表位,为制备具有高灵敏度和高特异性的鼻咽癌诊断试剂及研究抗肿瘤转移靶向治疗的分子免疫学奠定基础。  相似文献   

2.
SARS病毒M蛋白的二级结构和B细胞表位预测   总被引:4,自引:0,他引:4  
以SARS病毒基因组序列为基础,采用GarnierRobson方法、ChouFasman方法和KarplusSchulz方法预测蛋白质的二级结构;按KyteDoolittle方案、Emini方案和JamesonWolf方案预测SARS病毒M蛋白的B细胞表位。预测结果表明,在SARS病毒M蛋白N端第11~20、27~36区段和第133~141区段可能是α螺旋中心;M蛋白分子N端第20~27、34~37,44~56,61~64,70~76,79~97,117~132,142~147,165~176区段和第216~221区段可能是β折叠中心。在M蛋白N端第5~6、40~44、105~107、112~116、189~190、202~203区段和第210~215区段具有较柔软的结构,有可能进行一定幅度的摆动或折叠而形成较复杂的三级结构。SARS病毒M蛋白N端第1~15、37~47、99~120、181~192区段和第196~215区段内或附近很可能是B细胞表位优势区域。以蛋白质的二级结构预测作为辅助手段,用抗原指数,亲水性参数和可及性参数预测SARS冠状病毒M蛋白的B细胞表位,为实验确定SARS病毒M蛋白的B细胞表位和免疫识别研究奠定了基础 。  相似文献   

3.
本文用EB病毒转化自体淋巴细胞所建立的类淋巴母细胞系(LCL),以及用EB病毒潜伏感染膜蛋白(LMP)基因和核蛋白-2(EBNA2)基因与痘苗病毒重组的重组病毒(Vac-LMP和Vac-EBNA2)感染的自身纤维母细胞,同时作为刺激细胞和靶细胞,以~(51)Cr释放法检测5例血清中EB病毒VCA—IgA抗体阳性者及1例阴性健康者外周血单个核细胞(PBMC)的特异性T细胞杀伤效应。结果表明,用自身LCL激活的EB病毒特异性T细胞杀伤效应高峰出现在第14~28天;参与杀伤性细胞免疫反应的T细胞亚群主要是T3、T8阳性的细胞毒性T细胞,其对靶细胞的识别及杀伤受HLA-I的限制。用重组牛痘病毒感染的纤维母细胞作靶细胞或刺激细胞,有1例供者可接受LMP,另1例可接受EBNA2的刺激,并对相应的靶细胞产生特异性T细胞杀伤反应,表明EB病毒-LMP和EBNA2可能既是EB病毒特异性T细胞的刺激抗原,又是其识别的靶抗原。  相似文献   

4.
张溢  宋方洲 《生命的化学》2005,25(2):118-120
EB病毒(Epstein-Barr virus,EBV)是人类疱疹病毒,与淋巴系统、上皮细胞肿瘤相关。其编码潜伏性膜蛋白(LMPl、LMP2A和LMP2B)特别是LMP1,由于它是众多EBV编码蛋白质中唯一被明确证明能恶性转化原代B细胞、鼠成纤维细胞和人上皮细胞的蛋白质,所以被列为癌基因。最近对潜伏膜蛋白的研究显示.潜伏膜蛋白与病毒利用泛素蛋白酶系统来达到逃避宿主免疫应答等机制有关,研究这个过程也许可以开发新的策略来防治EBV相关肿瘤。  相似文献   

5.
以DMO和DMT氨基酸序列为基础,采用Garnier-Robson法、Chou-Fasman法和Karplus-Schulz法预测蛋白质的二级结构;按Kyte-Doolittle法、Emini法和Jameson-Wolf法预测DMO和DMT蛋白的B细胞抗原表位。预测结果表明:在DMO蛋白N-端第80~112,144~147,193~194,251~255,260~269区段和279~283区段,DMT蛋白N-端61~86,98~105,140~146,239~241区段和第269~273区段,可能是α-螺旋中心;DMO蛋白N-端第59~61,69~70,148~150区段和383~390区段,DMT蛋白的N-端第125~129,207~213,255~264区段和第281~284区段,可能是β-折叠中心;在DMO蛋白分子N-端40~41, 44~45,50~51,128~129,189~192,204~207,216~222,226~233,244~246,298~299区段和第323~326区段和DMT蛋白分子N-端第12~13,26~27,43~44,58~60,93~95,115~120,136~139区段和第149~151区段具有较柔软的结构,这些区段有可能进行一定幅度的摆动或折叠而形成较复杂的三级结构。DMO蛋白N-端第1~5,41~51,65~67,86~89,98~110,154~170,183~203,205~248,258~264,284~291,293~298,270~375,389~392,402~410区域和DMT蛋白N-端第1~9,17~28,77~84,114~123,131~139,157~184,196~207区域可能是B细胞表位优势区域。以蛋白质的二级结构预测作为辅助手段,用抗原指数,亲水性参数和可及性参数预测DMO和DMT蛋白的B细胞表位,为DMO和DMT蛋白单克隆抗体的制备提供了线索,为系统研究奥利亚罗非鱼DMO和DMT基因的性别调控机理研究提供参考。  相似文献   

6.
探讨EB病毒潜伏膜蛋白1(LMP1)激活激活蛋白1(AP1),和核转录因子(NF-κB)在鼻咽癌细胞SUNE-1及亚细胞株恶性演进中的作用.运用报告基因法和凝胶电泳迁移率法(EMSA)分析AP1和NF-κB反式激活活性和DNA结合活性,蛋白质印迹检测蛋白质表达;裸鼠致瘤实验结合组织制片研究瘤细胞的成瘤和转移能力. 结果显示恶性程度不同的SUNE-1亚细胞株的反式激活活性、DNA结合活性、LMP1蛋白表达及c-Jun氨基端激酶(JNK)活性均存在明显差异,且与细胞恶性程度正相关.这些结果提示LMP1活化AP1和NF-κB的信号通路参与了鼻咽癌细胞SUNE-1的恶性演进过程.  相似文献   

7.
潜伏膜蛋白1(LMP1)是由EB病毒编码的致瘤蛋白,众多研究表明LMP1蛋白可通过NF-κB、p38 MAPK、c-JNK等多条重要信号通路引起鼻咽癌细胞的生物学行为改变。我们从EB病毒阳性的B95-8狨猴淋巴瘤细胞中克隆EB病毒LMP1 c DNA,构建携带绿色荧光基因的真核表达质粒p IRES2-Zs-Green1-LMP1,通过脂质体转染的方法将质粒导入鼻咽癌细胞株CNE1、CNE2中,利用质粒所携带的绿色荧光蛋白表达粗略计算转染的效率,通过免疫细胞化学(ICC)、RT-PCR、Western-Blot检测该质粒的表达。本实验室所构建的p IRES2-Zs-Green1-LMP1表达质粒能在鼻咽癌细胞内表达LMP1蛋白,为后续的实验研究奠定基础。  相似文献   

8.
目的:制备高活性EB病毒Zta优势表位抗原并初步评价抗原活性。方法:利用生物学软件分析Zta抗原的B细胞表位分布,选取含有优势表位的抗原区段,然后利用分子生物学技术进行克隆表达获得纯化抗原,采用ELISA方法初步评价优势表位抗原的检测性能。结果:筛选确定Zta优势表位抗原区段为1~185 aa,并获得了高效表达的Zta优势表位抗原,基于该抗原建立的Zta-IgA间接ELISA方法可以有效区分鼻咽癌患者和健康对照。结论:获得的优势表位抗原Zta可用于鼻咽癌患者的早期筛查和诊断。  相似文献   

9.
EB病毒潜伏膜蛋白1介导c-Jun/JunB活性异源二聚体形成   总被引:2,自引:0,他引:2  
EB病毒编码的潜伏膜蛋白1可以活化AP-1转录因子, 其中c-Jun和JunB的相互关系和复杂作用一直是人们关注的焦点. 以Tet-on-LMP1 HNE2鼻咽癌细胞系为动态研究模型, 主要应用c-Jun/Jun B双染色间接免疫荧光法联合激光共聚焦荧光显微镜技术、Western blot方法、免疫共沉淀-Western blot方法以及Super-EMSA方法, 同时, 结合信号转导通路研究中的阻断策略, 研究证实EB病毒编码的潜伏膜蛋白1介导c-Jun/Jun B异源二聚体形成, 而且该二聚体具有与DNA结合活性. 该研究为LMP1调控下, AP1二聚体家族成员在不同时空信号传导通路中的动态组合和作用模式提供了新的机制.  相似文献   

10.
利用间接免疫荧光、基因转染、抗体剔除 (Ab knock out)、细胞平板集落形成、流式细胞术以及半胱氨酸天冬酰胺酶 (caspase3)活性检测等方法 ,从survivin核移位、Rb磷酸化、细胞周期演进、细胞克隆形成和细胞凋亡等方面 ,探讨EB病毒潜伏膜蛋白 1(LMP1)调控细胞增殖和细胞凋亡双重效应的分子机制 .结果发现 ,LMP1表达介导survivin核移位 ,促进细胞Rb磷酸化增加 ,S期细胞数显著增加 ;LMP1通过survivin促进细胞克隆形成 .用Ab knock out阻断survivin核移位和survivin反义核酸抑制survivin表达时 ,Rb磷酸化水平降低 ,S期细胞减少 ,抑制LMP1介导的细胞增殖 ,活化细胞caspase 3,诱导细胞凋亡 .结果提示 ,EB病毒LMP1通过survivin促进细胞增殖和抑制细胞凋亡  相似文献   

11.
Viral proteins expressed by EBV-associated tumors provide target Ags for immunotherapy. Adoptive T cell therapy has proven effective for posttransplant EBV-associated lymphoma in which all EBV latent Ags are expressed (type III latency). Application of immunotherapeutic strategies to tumors such as nasopharyngeal carcinoma and Hodgkin's lymphoma that have a restricted pattern of EBV Ag expression (type II latency) is under investigation. Potential EBV Ag targets for T cell therapy expressed by these tumors include latent membrane proteins (LMP) 1 and 2. A broad panel of epitopes must be identified from these target Ags to optimize vaccination strategies and facilitate monitoring of tumor-specific T cell populations after immunotherapeutic interventions. To date, LMP2 epitopes have been identified for only a limited number of HLA alleles. Using a peptide library spanning the entire LMP2 sequence, 25 CTL lines from patients with EBV-positive malignancies expressing type II latency were screened for the presence of LMP2-specific T cell populations. In 21 of 25 lines, T cell responses against one to five LMP2 epitopes were identified. These included responses to previously described epitopes as well as to newly identified HLA-A*0206-, A*0204/17-, A29-, A68-, B*1402-, B27-, B*3501-, B53-, and HLA-DR-restricted epitopes. Seven of the nine newly identified epitopes were antigenically conserved among virus isolates from nasopharyngeal carcinoma tumors. These new LMP2 epitopes broaden the diversity of HLA alleles with available epitopes, and, in particular, those epitopes conserved between EBV strains provide valuable tools for immunotherapy and immune monitoring.  相似文献   

12.
HCV抗原表位预测   总被引:1,自引:0,他引:1  
应用网络生物信息资源查找丙型肝炎病毒基因组全序列,用软件Lasergene中的EditSeq将来自中国河北株mRNA序列翻译为氨基酸序列,尔后用程序Protean进行氨基酸序列分析,对HCV各区段的B细胞抗原指数进行预测。同时又在两个网站对中国汉族人中频率较高的HLA基因型进行CD8和CD4T细胞表位预测。B细胞和T细胞抗原表位预测结果对于HCV诊断试剂和疫苗研制有重要的指导意义。  相似文献   

13.
Epstein-Barr virus (EBV) is a common human herpesvirus. Infection with EBV is associated with several human malignancies in which the virus expresses a set of latent proteins, among which is latent membrane protein 1 (LMP1). LMP1 is able to transform numerous cell types and is considered the main oncogenic protein of EBV. The mechanism of action is based on mimicry of activated members of the tumor necrosis factor (TNF) receptor superfamily, through the ability of LMP1 to bind similar adapters and to activate signaling pathways. We previously generated two unique models: a monocytic cell line and a lymphocytic (NC5) cell line immortalized by EBV that expresses the type II latency program. Here we generated LMP1 dominant negative forms (DNs), based on fusion between green fluorescent protein (GFP) and transformation effector site 1 (TES1) or TES2 of LMP1. Then we generated cell lines conditionally expressing these DNs. These DNs inhibit NF-κB and Akt pathways, resulting in the impairment of survival processes and increased apoptosis in these cell lines. This proapoptotic effect is due to reduced interaction of LMP1 with specific adapters and the recruitment of these adapters to DNs, which enable the generation of an apoptotic complex involving TRADD, FADD, and caspase 8. Similar results were obtained with cell lines displaying a latency III program in which LMP1-DNs decrease cell viability. Finally, we prove that synthetic peptides display similar inhibitory effects in EBV-infected cells. DNs derived from LMP1 could be used to develop therapeutic approaches for malignant diseases associated with EBV.  相似文献   

14.
Human CD4(+) T-helper 1 cell responses to Epstein-Barr virus (EBV) infection are likely to be important in the maintenance of virus-specific CD8(+) memory and/or as antiviral effectors in their own right. The present work has used overlapping peptides as stimulators of gamma interferon release (i) to identify CD4(+) epitopes within four EBV latent-cycle proteins, i.e., the nuclear antigens EBNA1 and EBNA3C and the latent membrane proteins LMP1 and LMP2, and (ii) to determine the frequency and magnitude of memory responses to these proteins in healthy virus carriers. Responses to EBNA1 and EBNA3C epitopes were detected in the majority of donors, and in the case of EBNA1, their antigen specificity was confirmed by in vitro reactivation and cloning of CD4(+) T cells using protein-loaded dendritic cell stimulators. By contrast, responses to LMP1 and LMP2 epitopes were seen much less frequently. EBV latent-cycle proteins therefore display a marked hierarchy of immunodominance for CD4(+) T-helper 1 cells (EBNA1, EBNA3C > LMP1, LMP2) which is different from that identified for the same proteins with respect to CD8(+)-T-cell responses (EBNA3C > EBNA1 > LMP2 > LMP1). Furthermore, the range of CD4(+) memory T-cell frequencies in peripheral blood of healthy virus carriers was noticeably lower and narrower than the corresponding range of latent antigen-specific CD8(+)-T-cell frequencies.  相似文献   

15.
16.
Epstein Barr Virus (EBV) replicates in oral epithelial cells and gains entry to B-lymphocytes. In B-lymphocytes, EBV expresses a restricted subset of genes, the Latency III program, which converts B-lymphocytes to proliferating lymphoblasts. Latent Membrane Protein 1 (LMP1) and the other Latency III associated proteins are also expressed during virus replication. LMP1 is essential for virus replication and egress from Akata Burkitt Lymphoma cells, but a role in epithelial cell replication has not been established. Therefore, we have investigated whether LMP1 enhances EBV replication and egress from HEK293 cells, a model epithelial cell line used for EBV recombinant molecular genetics. We compared wild type (wt) and LMP1-deleted (LMP1Δ) EBV bacterial artificial chromosome (BAC) based virus replication and egress from HEK293. Following EBV immediate early Zta protein induction of EBV replication in HEK293 cells, similar levels of EBV proteins were expressed in wt- and LMP1Δ-infected HEK293 cells. LMP1 deletion did not impair EBV replication associated DNA replication, DNA encapsidation, or mature virus release. Indeed, virus from LMP1Δ-infected HEK293 cells was as infectious as EBV from wt EBV infected HEK cells. Trans-complementation with LMP1 reduced Rta expression and subsequent virus production. These data indicate that LMP1 is not required for EBV replication and egress from HEK293 cells.  相似文献   

17.
Approximately 30% of patients with Epstein-Barr virus (EBV)-positive advanced nasopharyngeal carcinoma (NPC) display chemoresistance to cisplatin-based regimens, but the underlying mechanisms are unclear. The Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1), a functional homologue of the tumor necrosis factor receptor family, contributes substantially to the oncogenic potential of EBV through the activation of multiple signaling pathways, and it is closely associated with a poorer prognosis for NPC. Recent studies show that EBV infection can induce the expression of many cellular miRNAs, including microRNA-21, a biomarker for chemoresistance. However, neither a link between LMP1 expression and miR-21 upregulation nor their cross talk in affecting chemoresistance to cisplatin have been reported. Here, we observed that stable LMP1-transformed NPC cells were less sensitive to cisplatin treatment based on their proliferation, colony formation, the IC50 value of cisplatin and the apoptosis index. Higher levels of miR-21 were found in EBV-carrying and LMP1-positive cell lines, suggesting that LMP1 may be linked to miR-21 upregulation. These data were confirmed by our results that exogenous LMP1 increased miR-21 in both transiently and stably LMP1-transfected cells, and the knock down of miR-21 substantially reversed the resistance of the NPC cells to cisplatin treatment. Moreover, the proapoptotic factors programmed cell death 4 (PDCD4) and Fas ligand (Fas-L), which were negatively regulated by miR-21, were found to play an important role in the program of LMP1-dependent cisplatin resistance. Finally, we demonstrated that LMP1 induced miR-21 expression primarily by modulating the PI3K/AKT/FOXO3a signaling pathway. Taken together, we revealed for the first time that viral LMP1 triggers the PI3K/Akt/FOXO3a pathway to induce human miR-21 expression, which subsequently decreases the expression of PDCD4 and Fas-L, and results in chemoresistance in NPC cells.  相似文献   

18.
Nasopharyngeal carcinoma (NPC), an Epstein–Barr virus (EBV)-associated tumour common in Southern Chinese populations, is a potentially important target for T cell-based immunotherapy. The tumour cells are HLA class I- and II-positive and express a limited subset of EBV latent proteins, namely the nuclear antigen EBNA1 and the latent membrane proteins LMP2 and (in some cases) LMP1. To ask whether the tumour develops in the presence of a potentially protective host response or in its absence, we set out to determine the prevailing levels of CD4+ and CD8+ T cell memory to these proteins in NPC patients at tumour diagnosis. We first screened healthy Chinese donors against Chinese strain EBNA1, LMP1 and LMP2 sequences in Elispot assays of interferon-γ release and identified the immunodominant CD4+ and CD8+ epitope peptides presented by common Chinese HLA alleles. Then, comparing 60 patients with >70 healthy controls on peptide epitope mini-panels, we found that T cell memory to CD4 epitopes in all three proteins was unimpaired in the blood of patients at diagnosis. In most cases NPC patients also showed detectable responses to CD8 epitopes relevant to their HLA type, the one consistent exception being the absence in patients of a B*4001-restricted response to LMP2. We infer that NPC arises in patients whose prevailing levels of T cell memory to tumour-associated EBV proteins is largely intact; the therapeutic goal must therefore be to re-direct the existing memory repertoire more effectively against antigen-expressing tumour cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Epstein-Barr virus (EBV) is associated with several human malignancies where it expresses limited subsets of latent proteins. Of the latent proteins, latent membrane protein 1 (LMP1) is a potent transforming protein that constitutively induces multiple cell signaling pathways and contributes to EBV-associated oncogenesis. Regulation of LMP1 expression has been extensively described during the type III latency of EBV. Nevertheless, in the majority of EBV-associated tumors, the virus is commonly found to display a type II latency program in which it is still unknown which viral or cellular protein is really involved in maintaining LMP1 expression. Here, we demonstrate that LMP1 activates its own promoter pLMP1 through the JNK signaling pathway emerging from the TES2 domain. Our results also reveal that this activation is tightly controlled by LMP1, since pLMP1 is inhibited by LMP1-activated NF-kappaB signaling pathway. By using our physiological models of EBV-infected cells displaying type II latency as well as lymphoblastoid cell lines expressing a type III latency, we also demonstrate that this balanced autoregulation of LMP1 is shared by both latency programs. Finally, we show that this autoactivation is the most important mechanism to maintain LMP1 expression during the type II latency program of EBV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号