首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integration of behaviourally relevant odours at the central nervous level of 3rd instar nymphal desert locusts, Schistocerca gregaria, showed phase- and (developmental) stage-dependent characteristics which correlated with differences in the number of olfactory sensilla. Antennal lobe (AL) neurons of gregarious locusts generally responded more frequently and showed a higher sensitivity to the tested stimuli. However, AL neurons of solitary locusts responded significantly more frequently to phenylacetonitril, the major component of the adult aggregation pheromone. Pheromone-specific, plant-specific and pheromone-plant generalist neurons were found in both phases. The response spectra of pheromone-specific neurons correlated with the potential behavioural significance of attractant chemical cues in the environment. Neurons of both phases responded specifically to stage-specific aggregation-pheromone components and to other chemical cues that may be involved in the location of suitable roosting and foraging sites.  相似文献   

2.
Locust phase polymorphism is an extreme example of behavioral plasticity; in response to changes in population density, locusts dramatically alter their behavior. These changes in behavior facilitate the appearance of various morphological and physiological phase characteristics. One of the principal behavioral changes is the more intense flight behavior and improved flight performance of gregarious locusts compared to solitary ones. Surprisingly, the neurophysiological basis of the behavioral phase characteristics has received little attention. Here we present density-dependent differences in flight-related sensory and central neural elements in the desert locust. Using techniques already established for gregarious locusts, we compared the response of locusts of both phases to controlled wind stimuli. Gregarious locusts demonstrated a lower threshold for wind-induced flight initiation. Wind-induced spiking activity in the locust tritocerebral commissure giants (TCG, a pair of identified interneurons that relay input from head hair receptors to thoracic motor centers) was found to be weaker in solitary locusts compared to gregarious ones. The solitary locusts' TCG also demonstrated much stronger spike frequency adaptation in response to wind stimuli. Although the number of forehead wind sensitive hairs was found to be larger in solitary locusts, the stimuli conveyed to their flight motor centers were weaker. The tritocerebral commissure dwarf (TCD) is an inhibitory flight-related interneuron in the locust that responds to light stimuli. An increase in TCD spontaneous activity in dark conditions was significantly stronger in gregarious locusts than in solitary ones. Thus, phase-dependent differences in the activity of flight-related interneurons reflect behavioral phase characteristics.  相似文献   

3.
Locust phase polymorphism is an extreme example of behavioral plasticity; in response to changes in population density, locusts dramatically alter their behavior. These changes in behavior facilitate the appearance of various morphological and physiological phase characteristics. One of the principal behavioral changes is the more intense flight behavior and improved flight performance of gregarious locusts compared to solitary ones. Surprisingly, the neurophysiological basis of the behavioral phase characteristics has received little attention. Here we present density‐dependent differences in flight‐related sensory and central neural elements in the desert locust. Using techniques already established for gregarious locusts, we compared the response of locusts of both phases to controlled wind stimuli. Gregarious locusts demonstrated a lower threshold for wind‐induced flight initiation. Wind‐induced spiking activity in the locust tritocerebral commissure giants (TCG, a pair of identified interneurons that relay input from head hair receptors to thoracic motor centers) was found to be weaker in solitary locusts compared to gregarious ones. The solitary locusts' TCG also demonstrated much stronger spike frequency adaptation in response to wind stimuli. Although the number of forehead wind sensitive hairs was found to be larger in solitary locusts, the stimuli conveyed to their flight motor centers were weaker. The tritocerebral commissure dwarf (TCD) is an inhibitory flight‐related interneuron in the locust that responds to light stimuli. An increase in TCD spontaneous activity in dark conditions was significantly stronger in gregarious locusts than in solitary ones. Thus, phase‐dependent differences in the activity of flight‐related interneurons reflect behavioral phase characteristics. © 2003 Wiley Periodicals, Inc. J Neurobiol 57: 152–162, 2003  相似文献   

4.
Abstract. Volatiles from solitary-reared (solitarious) and crowd-reared (gregarious) adult male desert locusts, Schistocerca gregaria (Forskal) (Orthoptera: Acrididae), were quantitatively and qualitatively different.In particular, solitarious males did not emit phenylacetonitrile, a key component of the aggregation pheromone produced by gregarious adult males.In laboratory bioassays, solitarious and gregarious adults of both sexes responded similarly to the natural aggregation pheromone blend, the major pheromone component phenylacetonitrile, and a synthetic pheromone blend comprising benzaldehyde, guaiacol, phenylacetonitrile and phenol.EAG measurements showed significant differences in the responsiveness of adults of the two phases to the four synthetic components at high doses; however, the general response patterns were similar.These results suggest that the gregarious adult male aggregation pheromone may play a role in the arrestment and subsequent recruitment of solitarious individuals into gregarious or gregarizing groups during the early stages of a locust outbreak.  相似文献   

5.
Olfactory receptor neurons present in two morphological sensillum types on the male Schistocerca gregaria antenna were for the first time investigated physiologically when stimulated with behaviourally relevant odours. Neurons present in trichoid/basiconic sensilla showed clear excitatory responses to compounds present in the male-produced aggregation pheromone and also to a plant produced compound. Sensilla could be categorised physiologically according to the responses of their receptor neurons to the tested stimuli. Also receptor neurons present in sensilla coeloconica responded to aggregation pheromone components, but always in an inhibitory fashion. These neurons could, however, be excited by a plant produced compound and by some acids present in the nymphal odour. The antennal lobe of the male S. gregaria was observed to contain about 1000 very small glomerular structures. Single receptor neurons were stained from the antenna to the antennal lobe using a cobalt lysine technique. These stainings revealed a multi glomerular axonal branching pattern of antennal receptor neurons.Abbreviations AN antennal nerve - AL antennal lobe - RN receptor neuron  相似文献   

6.
7.
蝗虫多型现象的神经内分泌调控   总被引:3,自引:1,他引:2  
蝗虫有两种型,即散居型和群居型。蝗灾通常由群居型蝗虫所引发。多年来人们试图找到控制蝗虫由散居型向群居型转变的关键因子,以期控制蝗虫危害。该文主要从神经内分泌的角度概述了蝗虫多型性的生理机制,重点介绍了保幼激素、蜕皮激素和脑神经肽[His7]-corazonin在蝗虫多型性中的主要作用和机制。  相似文献   

8.
Abstract.Recordings from antennal olfactory receptor neurones in young adult Schistocerca gregaria Forskål (Orthoptera: Acrididae) showed that behaviourally important odours are detected by receptor neurones present in morphologically identifiable sensillum types. Both nymph- and adult-produced aggregation pheromones activate receptor neurones housed in sensilla basiconica. The receptor neurones in this sensillum type in solitary-reared locusts display a higher sensitivity to aggregation pheromones and to some other behaviourally relevant odours than the same type of neurones in gregarious locusts. Receptor neurones present in sensilla coeloconica respond to green leaf odours, organic acids, and nymphal odours but are inhibited by mature adult-produced aggregation pheromones. Receptor neurones housed in sensilla trichodea respond to a possible sex pheromone. No phase differences were found in the response of coeloconic- or trichoid-associated receptor neurones.  相似文献   

9.
Locusts show an extreme example of density-dependent phase polymorphism, demonstrating within the species differences in morphology as well as biology, dependent on the population density. Behavior is the primary density-dependent change which facilitates the appearance of various morphological and physiological phase characteristics. We have studied density dependent differences in flight related sensory and central neural elements in the desert locust Schistocerca gregaria. Wind generated high frequency spiking activity in the tritocerebral commissure giant (TCG, an identified interneuron that relay inputs from head hair receptors to thoracic motor centers) that was much less intense in solitary locusts, compared to gregarious ones. In addition the solitary locusts' TCG demonstrated much stronger adaptation of its response. In cases when flight was initiated high frequency TCG activity was independent of the locust phase. The tritocerebral commissure dwarf (TCD) is a GABAergic flight related interneuron that is sensitive to ambient illumination intensity. An increase in the TCD spontaneous activity under dark vs. light conditions was significantly higher in gregarious locusts then in solitary ones, implying a flight-related inhibitory mechanism that is far more active in gregarious locusts under dark conditions. Thus, density-dependent phase differences in interneuron activity pattern and properties well reflect and may be at least partially responsible to behavioral flight-related characteristics.  相似文献   

10.
Bioassays have shown that the locust gregarization pheromone, locustol, and the adrenergic hormone, noradrenaline, act in a similar way on the phase characteristics of the locust and are thus mimics. Investigations of the affects of dopa (a noradrenaline substrate) and its antagonist aldomet, and of the effects of adenosine 3′–5′ monophosphate (cyclic AMP), its agonists and antagonists, as well as an assay of cyclic AMP in the two phases, have strengthened this conclusion. It is postulated that the pheromone acts like an adrenergic hormone to promote the production of cyclic AMP which effects the characteristic changes when the solitary phase of locusts transforms into the gregarious phase.  相似文献   

11.
Intracellular recordings were made from the major neurites of local interneurons in the moth antennal lobe. Antennal nerve stimulation evoked 3 patterns of postsynaptic activity: (i) a short-latency compound excitatory postsynaptic potential that, based on electrical stimulation of the antennal nerve and stimulation of the antenna with odors, represents a monosynaptic input from olfactory afferent axons (71 out of 86 neurons), (ii) a delayed activation of firing in response to both electrical- and odor-driven input (11 neurons), and (iii) a delayed membrane hyperpolarization in response to antennal nerve input (4 neurons).Simultaneous intracellular recordings from a local interneuron with short-latency responses and a projection (output) neuron revealed unidirectional synaptic interactions between these two cell types. In 20% of the 30 pairs studied, spontaneous and current-induced spiking activity in a local interneuron correlated with hyperpolarization and suppression of firing in a projection neuron. No evidence for recurrent or feedback inhibition of projection neurons was found. Furthermore, suppression of firing in an inhibitory local interneuron led to an increase in firing in the normally quiescent projection neuron, suggesting that a disinhibitory pathway may mediate excitation in projection neurons. This is the first direct evidence of an inhibitory role for local interneurons in olfactory information processing in insects. Through different types of multisynaptic interactions with projection neurons, local interneurons help to generate and shape the output from olfactory glomeruli in the antennal lobe.Abbreviations AL antennal lobe - EPSP excitatory postsynaptic potential - GABA -aminobutyric acid - IPSP inhibitory postsynaptic potential - LN local interneuron - MGC macroglomerular complex - OB olfactory bulb - PN projection neuron - TES N-tris[hydroxymethyl]methyl-2-aminoethane-sulfonic acid  相似文献   

12.
Desert locusts [Schistocerca gregaria Forskål (Orthoptera, Acrididae)] change phase in response to population density: solitarious insects avoid one another, but when crowded they change to the gregarious phase and aggregate. The attraction/repulsion responses of gregarious and solitarious locusts maintain phase differences in locust populations. Despite considerable research, the cues for aggregation are poorly understood; moreover, the repulsion response of solitarious locusts has not previously been investigated. This study analyzes the role of visual and olfactory stimuli in triggering these different responses to conspecifics. Isolation-reared insects were repelled by both olfactory and visual stimuli from other locusts. Crowd-reared insects were attracted by the combination of olfactory and visual cues. In addition, olfactory stimuli affected other behaviors in both phases, and behavioral differences between isolation- and crowd-reared locusts were clear even in the absence of conspecifics. The sensory and neurological mechanisms underlying these responses are not well understood and will form the basis for neurobiological investigations of locust phase.  相似文献   

13.
Using intra- and extracellular recording methods, we studied the activity of pheromone-responsive projection neurons in the antennal lobe of the moth Manduca sexta. Intracellularly recorded responses of neurons to antennal stimulation with the pheromone blend characteristically included both inhibitory and excitatory stages of various strengths. To observe the activity of larger groups of neurons, we recorded responses extracellularly in the macroglomerular complex of the antennal lobe. The macroglomerular complex is part of a specialized olfactory subsystem and the site of first-order central processing of sex-pheromonal information. Odors such as the pheromone blend and host-plant (tobacco) volatiles gave rise to evoked potentials that were reproducible upon repeated antennal stimulation. Evoked potentials showed overriding high-frequency oscillations when the antenna was stimulated with the pheromone blend or with either one of the two key pheromone components. The frequency of the oscillations was in the range of 30–50 Hz. Amplitude and frequency of the oscillations varied during the response to pheromonal stimulation. Recording intracellular and extracellular activity simultaneously revealed phase-locking of action potentials to potential oscillations. The results suggest that the activity of neurons of the macroglomerular complex was temporally synchronized, potentially to strengthen the pheromone signal and to improve olfactory perception. Accepted: 19 December 1997  相似文献   

14.
15.
Courtship inhibition pheromone in desert locusts,Schistocerca gregaria   总被引:1,自引:0,他引:1  
Male desert locusts in the gregarious phase release phenylacetonitrile (PAN) on becoming sexually mature. It has been assumed that this chemical is responsible for aggregation of adult desert locusts. However, PAN has repellent characteristics and is involved in sexual behavior. Mature males release PAN as a volatile to serve as a kind of olfactory concealment during mating and to prevent competing males from homosexual encounters. We conclude that PAN is a courtship-inhibiting pheromone exclusively used under crowded conditions in dense populations when high sperm competition occurs among desert locust males. By chemically enhancing their mate guarding, gregarious males improve the protection of their mate from rivals and ensure their reproductive success.  相似文献   

16.
The ability of parasites to modify the behaviour of their hosts is a wide spread phenomenon, but the effects of microsporidian parasites on locust behaviour remain unexplored. Here the frequencies of directional changes (ND) and jumping (NJ) per minute of gregarious locusts infected with 2000 spores of the microsporidian parasite Paranosema locustae were significantly different from those of untreated locusts 10 and 16 days after infection, being similar to values for solitary nymphs. In contrast, the behaviour of locusts inoculated with the lower doses of 200 spores/locust was sometimes like that of solitary nymphs. At other times, behaviour was intermediate between solitary and gregarious, i.e. transitional. The rearing density did not affect the turning and jumping behaviour of infected locusts, and their behaviours were similar to those of solitary locusts at 10–16 days after infection. Our study demonstrates that infection with P. locustae may lead gregarious locusts to change some of their behaviour to that typical of solitary locusts.  相似文献   

17.
Chemical communication plays an important role in density‐dependent phase change in locusts. However, the volatile components and emission patterns of the migratory locust, Locusta migratoria, are largely unknown. In this study, we identified the chemical compositions and emission dynamics of locust volatiles from the body and feces and associated them with developmental stages, sexes and phase changes. The migratory locust shares a number of volatile components with the desert locust (Schistocerca gregaria), but the emission dynamics of the two locust species are significantly different. The body odors of the gregarious nymphs in the migratory locust consisted of phenylacetonitrile (PAN), benzaldehyde, guaiacol, phenol, aliphatic acids and 2,3‐butanediol, and PAN was the dominant volatile. Volatiles from the fecal pellets of the nymphs primarily consist of guaiacol and phenol. Principal component analysis (PCA) showed significant differences in the volatile profiles between gregarious and solitary locusts. PAN and 4‐vinylanisole concentrations were significantly higher in gregarious individuals than in solitary locusts. Gregarious mature males released significantly higher amounts of PAN and 4‐vinylanisole during adulthood than mature females and immature adults of both sexes. Furthermore, PAN and 4‐vinylanisole were completely lost in gregarious nymphs during the solitarization process, but were obtained by solitary nymphs during gregarization. The amounts of benzaldehyde, guaiacol and phenol only unidirectionally decreased from solitary to crowded treatment. Aliphatic aldehydes (C7 to C10), which were previously reported as locust volatiles, are now identified as environmental contaminants. Therefore, our results illustrate the precise odor profiles of migratory locusts during developmental stages, sexes and phase change. However, the function and role of PAN and other aromatic compounds during phase transition need further investigation.  相似文献   

18.
Pheromones in relation to aggregation and reproduction in desert locusts   总被引:4,自引:0,他引:4  
Abstract. Desert locusts, Schistocerca gregaria (Forskål) (Orthoptera: Acrididae), exhibit a population density-dependent phase polymorphism which includes the gradual change of many morphological, physiological and behavioural characteristics. Many volatiles associated with desert locusts have been identified recently and it is assumed that they are involved in pheromonal control of behaviour and development of locusts. Ovipositing females deposit with their egg pods several volatiles that appear to be attractive to other females resulting – possibly in combination with environmental factors – in an aggregated oviposition. Mature males release several volatiles, among them phenylacetonitrile, which are reported to accelerate sexual maturation in young males. Also, aggregation pheromone systems for hoppers and adults have been described. However, recent studies and publications shed a new light on the postulated effects of some of these volatiles. Gregarious behaviour can undoubtedly be induced by mechanical stimuli. Furthermore, the main component of the adult aggregation pheromone system, phenylacetonitrile, is found to be a repellent obviously not involved in aggregation. Comprehensive studies have demonstrated that phenylacetonitrile is used by mature gregarious males as a courtship inhibition pheromone to enhance mate guarding. Recent progress, contradictory results and perspectives in desert locust pheromone research related to reproduction are summarized and discussed in this paper.  相似文献   

19.
An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female’s sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号