首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
评价、筛选并利用栽培大豆的耐盐种质资源,对开发利用盐渍土具有极其重要的意义。本文从耐盐性评价方法、耐盐的生理生化基础、耐盐的分子生物学基础及耐盐种质的筛选与创新等4方面,对栽培大豆的耐盐性研究进展进行了系统综述。同时对栽培大豆耐盐性研究现存的问题与今后的发展方向进行了讨论,以期为栽培大豆耐盐性研究提供参考。  相似文献   

2.
栽培大豆和野生大豆耐盐性及离子效应的比较   总被引:36,自引:0,他引:36  
以国际上常用的耐盐大豆(Glycine max L.)品种Lee68为对照,在发芽期和苗期两个阶段,利用发芽指数、指害指数和耐盐系数等指标对一年生具盐腺野生大豆(Glycine soja L.)和部分栽培大豆(Glycine max L.)及某些野生大豆品系或品种的耐盐性进行了比较,讨论了耐盐指标的可行性。从离子效应方面比较了Na^ 和Cl^-对大豆发芽率的影响,并对具盐腺野生大豆的耐盐机理进行了初步分析。结果表明,大豆品种的耐盐性在发芽期和苗期无一致相关性。轻度等渗胁迫下,Na^ 对种子发芽率的抑制作用大于Cl^-,而重度等渗胁迫下则相反。通过减少由根系吸收的Na^ 、Cl^-向叶片的运输,维持叶片中较高含量的K^ ,减轻盐离子毒害,可能是具盐腺野生大事耐盐的主要生理机制之一。  相似文献   

3.
大豆耐盐机理及相关基因分子标记   总被引:9,自引:0,他引:9  
大豆耐盐涉及多种生理代谢途径.耐盐大豆能够通过Cl-排除、控制Na 的吸收和转运、合成渗透调节物质、改变细胞膜膜脂组分及相关酶类的活性等多种形式来适应盐胁迫;野生大豆群体具有盐腺,从形态结构上适应盐逆境;大豆-根瘤菌共生体在盐胁迫下通过互作来提高整体的耐盐性.分子生物学技术应用于大豆耐盐研究,已获得了一些与耐盐相关基因连锁的分子标记.广泛搜集筛选大豆栽培种和野生种资源,利用分子生物学技术和基因工程提高大豆耐盐性,将成为未来大豆耐盐研究的主要内容.  相似文献   

4.
郭宝生  翁跃进 《植物学报》2004,21(1):113-120
大豆耐盐涉及多种生理代谢途径。耐盐大豆能够通过Cl-排除、控制Na+的吸收和转运、合成渗透调节物质、改变细胞膜膜脂组分及相关酶类的活性等多种形式来适应盐胁迫;野生大豆群体具有盐腺,从形态结构上适应盐逆境;大豆-根瘤菌共生体在盐胁迫下通过互作来提高整体的耐盐性。分子生物学技术应用于大豆耐盐研究,已获得了一些与耐盐相关基因连锁的分子标记。广泛搜集筛选大豆栽培种和野生种资源,利用分子生物学技术和基因工程提高大豆耐盐性,将成为未来大豆耐盐研究的主要内容。  相似文献   

5.
植物耐盐相关基因克隆与转化研究进展   总被引:16,自引:0,他引:16  
土地盐渍化是农作物产量降低的一个重要因素。从盐分对植物的伤害、植物耐盐的机理、耐盐相关基因的克隆及转耐盐基因植物等方面论述了植物的耐盐机理及转耐盐基因植物的研究现状,分析了耐盐性状的复杂性,并对前景进行了展望。  相似文献   

6.
野生大豆种质资源的研究与利用   总被引:5,自引:0,他引:5  
野生大豆是大豆种质改良中抗病、抗虫、抗不良环境的重要基因来源。近年来,野生大豆在产量、品质、抗病虫等方面的优异性状,正在得到日趋重视,在利用野生大豆资源拓宽大豆种质遗传基础的研究与利用方面,取得了重要进展。  相似文献   

7.
大豆种质资源耐盐性鉴定与研究   总被引:9,自引:0,他引:9  
通过对793份大豆种质资源进行芽期耐盐性鉴定,以及部分品种进行苗期和全生育期耐盐性鉴定,筛选出芽期、苗期及全生育期耐盐品种117份、41份和35份。其中有3个品种(WDD1812,晋豆23和晋遗38号)在芽期和苗期都表现高耐盐性;1个品种(晋豆23)在芽期、苗期、全生育期都表现高耐盐性。晋豆23还具有高度抗旱、高抗病毒病、耐红蜘蛛等特性,而晋遗38号来源于晋豆23。芽期或苗期耐盐性为一级的品种,如中黄13、新大豆1号、陕豆125、东农46、东大1号、合丰38等,不但具有高耐盐性,而且具有很好的丰产性,有些品种还具有优质和抗逆等优异的农艺性状。本研究筛选到的耐盐品种将为大豆耐盐育种提供优异的种质资源,同时对大豆全生育期耐盐性鉴定的指标和方法的探讨,将为大豆耐盐性鉴定科学方法的建立提供重要信息。  相似文献   

8.
50份长果黄麻种质资源耐盐性鉴定评价   总被引:1,自引:0,他引:1  
通过对来自不同国家的50份长果黄麻种质苗期耐盐性综合评价,评估不同黄麻种质耐盐特性,筛选黄麻耐盐极端材料,为进一步挖掘黄麻耐盐基因及分子机理研究准备材料。本研究采用水培法,设0、250 mmol/L Na Cl两个浓度对50份黄麻种质材料进行处理,调查盐处理后每份材料盐害指数的变化以及第8天的死亡率,建立盐害指数随时间变化的回归模型,利用回归方程分别求出每份材料盐害症状出现的时间以及盐害指数达到50%的时间,通过主成分分析、隶属函数法、聚类分析等方法对供试材料进行综合评价和耐盐性级别划分。结果表明,250 mmol/L Na Cl胁迫对于本试验是一个适宜的浓度;建立的50个回归方程拟合效果良好;根据对50份黄麻种质材料的综合评价值及聚类分析,可以将其分为4种耐盐类型,其中,高耐盐材料3份,耐盐材料6份,盐敏感材料10份,中度耐盐材料31份。  相似文献   

9.
人工海水胁迫下小麦种质资源的耐盐性筛选与鉴定   总被引:2,自引:0,他引:2  
利用人工配制的海水筛选耐盐性较好的小麦品种,为沿海滩涂地区的小麦耐盐育种提供重要信息。本研究利用人工海水处理的方法,对363份小麦种质资源进行了芽期耐盐性初步鉴定,筛选出芽期耐盐性为1级的小麦种质28份。进一步对芽期耐盐性较好的48份小麦种质进行了苗期耐盐性鉴定,并对其耐盐指标进行隶属值模糊评价分析,从中鉴定出了2个苗期耐盐性较强的小麦种质,分别为淮麦31和红壳洋麦。依据来源的不同,发现小麦种质资源的芽期耐盐性大小依次为地方品种>育成品种>国外引进品种。小麦芽期与苗期的耐盐性相关分析表明,二者相关性极低(r=-0.0051)。  相似文献   

10.
盐地碱蓬耐盐相关基因克隆研究进展   总被引:3,自引:0,他引:3  
盐地碱蓬是一种生长于盐碱地和海滨沙滩的盐生植物,富含氨基酸、维生素、矿物质等,极具开发价值。由于其具有很强的耐盐性,人们日益重视其耐盐机理的研究。目前对其耐盐机理的研究已经进入到耐盐基因的克隆、结构分析、功能研究等方面。综述了近年来盐地碱蓬与耐盐相关的基因克隆、结构及功能分析等方面的研究进展。  相似文献   

11.
【目的】了解盐渍土野大豆根瘤菌的多样性,筛选具有耐盐促生作用的菌株,为栽培大豆耐盐菌剂的开发提供菌种资源。【方法】采用传统培养方法从滨海盐渍土野大豆中分离根瘤菌,评价菌株的促生特性,并验证其对野大豆和栽培大豆的促生效果。【结果】从野大豆根和根瘤样品中分离出87株根瘤菌,主要为中华根瘤菌属(Sinorhizobium)、根瘤菌属(Rhizobium)和慢生根瘤菌属(Bradyrhizobium)。测定了24株代表性菌株的促生特性,发现有16株根瘤菌具有产吲哚-3-乙酸(indole-3-acetic acid, IAA)能力,6株能够产生1-氨基环丙烷-1-羧酸(1-amino-cyclopropane-1- carboxylic, ACC)脱氨酶,16株具有溶磷活性,6株能够产生铁载体。根据以上促生特性,选择了11株优良根瘤菌进行野大豆促生和结瘤能力评价,发现美洲中华根瘤菌(Sinorhizobium americanus) DL3的性能优于其他菌株。最后,通过盆栽试验检测了菌株DL3对野大豆和栽培大豆耐盐能力的影响,发现菌株DL3在盐胁迫下能促进野大豆和大豆的生长,同时,降低了叶片脯氨酸水平,缓解了植物的盐胁迫程度。【结论】菌株DL3在提高植物耐盐性方面具有一定的作用,对实现大豆的盐碱地种植具有重要的理论意义和实践价值。  相似文献   

12.
Salt-affected soils are generally classified into two main categories, sodic (alkaline) and saline. Our previous studies showed that the wild soybean accession JWS156-1 (Glycine soja) from the Kinki area of Japan was tolerant to NaCl salt, and the quantitative trait locus (QTL) for NaCl salt tolerance was located on soybean linkage group N (chromosome 3). Further investigation revealed that the wild soybean accession JWS156-1 also had a higher tolerance to alkaline salt stress. In the present study, an F6 recombinant inbred line mapping population (n = 112) and an F2 population (n = 149) derived from crosses between a cultivated soybean cultivar Jackson and JWS156-1 were used to identify QTL for alkaline salt tolerance in soybean. Evaluation of soybean alkaline salt tolerance was carried out based on salt tolerance rating (STR) and leaf chlorophyll content (SPAD value) after treatment with 180 mM NaHCO3 for about 3 weeks under greenhouse conditions. In both populations, a significant QTL for alkaline salt tolerance was detected on the molecular linkage group D2 (chromosome 17), which accounted for 50.2 and 13.0% of the total variation for STR in the F6 and the F2 populations, respectively. The wild soybean contributed to the tolerance allele in the progenies. Our results suggest that QTL for alkaline salt tolerance is different from the QTL for NaCl salt tolerance found previously in this wild soybean genotype. The DNA markers closely associated with the QTLs might be useful for marker-assisted selection to pyramid tolerance genes in soybean for both alkaline and saline stresses.  相似文献   

13.
Salt is an important factor affecting the growth and development of soybean in saline soil. In this study, a novel soybean gene encoding a transporter (GmHKT1) was identified and its function analyzed using transgenic plants. GmHKT1 encoded a protein of 419 amino acids, with a potential molecular mass of 47.06 kDa and a predicted pI value of 8.59. Comparison of the genomic and cDNA sequences of GmHKT1 identified no intron. The deduced amino acid sequence of GmHKT1 showed 38–49% identity with other plant HKT‐like sequences. RT‐PCR analysis showed that the expression of GmHKT1 was upregulated by salt stress (150 mM NaCl) in roots and leaves but not in stems. Overexpression of GmHKT1 significantly enhanced the tolerance of transgenic tobacco plants to salt stress, compared with non‐transgenic plants. To investigate the role of GmHKT1 in K+ and Na+ transport, we compared K+ and Na+ accumulation in roots and shoots of wild‐type and transgenic tobacco plants. The results suggested that GmHKT1 is a transporter that affected K+ and Na+ transport in roots and shoots, and regulated Na+/K+ homeostasis in these organs. Our findings suggest that GmHKT1 plays an important role in response to salt stress and would be useful in engineering crop plants for enhanced tolerance to salt stress.  相似文献   

14.
15.
Salinity is a major factor resulting in extensive loss of agricultural production. Genetic transformation has become a powerful tool for studying gene function and for improving crop salt tolerance. In this study, a TaNHX2 gene was transformed into a plant cloning vector under the control of cauliflower mosaic virus 35S promoter, and then introduced into Agrobacterium rhizogenes strain K599. Explants of soybean were transformed with A. rhizogenes and ‘composite’ plants consisting of wild-type shoots and transgenic hairy roots overexpressing TaNHX2 were produced. When exposed to salt stress, ‘composite’ plants displayed high salinity tolerance at 171 mM NaCl in vermiculite and in solid medium supplemented with up to 200 mM NaCl, whereas control plants displayed chlorosis and died within 15 days under above treatment conditions. We subsequently obtained soybean plants overexpressing TaNHX2 through A. tumefaciens-mediated transformation and studied four homozygous lines of TaNHX2. Transgenic lines displayed an enhanced salt tolerance in plant biomass and flower number per plant, compared with wild type plants grown on sand culture containing 150 mM NaCl. Furthermore, transgenic plants of line C12-11 showed longer survival, less growth inhibition and greater number of flowers than wild type plants. Taken together, these results indicated that TaNHX2 gene could enhance salt tolerance of soybean, and A. rhizogenes-mediated transformation system could be used as a complementary tool of A. tumerfaciens-mediated transformation to rapidly investigate candidate gene function in soybean.  相似文献   

16.
Improving salt tolerance of economically important plants is imperative to cope with the increasing soil salinity in many parts of the world. Mutation breeding has been widely used to improve plant performance under salinity stress. In this study, we have mutagenized Echinochloa crusgalli L. with sodium azide and three selected mutants (designated fows A) with salt tolerant germination. Their vegetative growth was compared to that of the wild type after short-term and long-term salt stress. The germination of the three fows A mutants in the presence of inhibitory concentrations of NaCl, KCL, and mannitol was better than that of the wild type. Early growth of the mutants in the presence of 200 mM NaCl was also better than that of the wild type perhaps due to improved K+ uptake and enhanced accumulation of sugars particularly sucrose at least in two mutants. But the three mutants and the wild type responded similarly to long-term salt stress. The tolerance mechanisms during short-term and long-term salt stress are discussed.  相似文献   

17.
Salt stress is one important factor influencing the growth and development of plants, and salt tolerance of plants is a result of combined action of multiple genes and mechanisms. Rosa rugosa is not only an important ornamental plant, but also the natural aromatic plant of high value. Wild R. rugosa which is naturally distributed on the coast and islands of China has a good salt tolerance due to the special living environment. Here, the vacuolar Na+/H+ reverse transporter gene (NHX1) and the vacuolar H+-ATPase subunit C gene (VHA-c) closely related to plant salt tolerance were isolated from wild R. rugosa, and the expression patterns in R. rugosa leaves of the two genes under NaCl stress were determined by real-time quantitative fluorescence PCR. The results showed that the RrNHX1 protein is a constitutive Na+/H+ reverse transporter, the expression of the RrNHX1 gene first increased and then decreased with the increasing salt concentration, and had a time-controlled effect. The RrVHA-c gene is suggestive of the housekeeping feature, its expression pattern showed a similar variation trend with the RrNHX1 gene under the stress of different concentrations of NaCl, and its temporal expression level under 200 mM NaCl stress presented bimodal change. These findings indicated that RrNHX1 and RrVHA-c genes are closely associated with the salt tolerance trait of wild R. rugosa.  相似文献   

18.
In this study we describe the selection and characterization of barnyard grass (Echinochloa crusgalli L.) mutants (fows B) with vegetative salt tolerance as compared to a previously described mutant with salt tolerant germination (fows A3). Salt tolerance of both types of mutants was characterized in two distinctive stages of plant development, germination and vegetative growth. About 46% of fows A3 seeds germinated in 300 mM NaCl but none of the seeds of the wild type or fows B mutants were able to germinate in this salt concentration. However, fows B mutants showed significantly higher fresh weights compared to the wild type and the fows A3 mutant when grown in the presence of 200 mM NaCl for 25 days. This indicated that fows B mutants are more salt tolerant than fows A3 mutant as well the wild type. The vegetative salt tolerance of the fows B mutants depended mainly on maintaining more efficient photosynthetic machinery, by keeping significantly higher chlorophyll and Rubisco contents and accumulating soluble sugars particularly sucrose. In addition, fows B mutants had significantly lower malondialdehyde (MDA) contents than did fows A3 and the wild type. This was apparently the result of higher activities of catalase (CAT) and peroxidase (POD) in fows B mutants compared to the wild type and fows A3, indicating that more efficient control of reactive oxygen species correlates with salt tolerance. However, proline accumulation and K+/Na+ ratio did seem to be essential to vegetative salt tolerance. The vegetative salt tolerance mechanisms in fows B mutants were weakly expressed in the wild type and fows A3 mutant. The results provide evidence that salt tolerance during germination and vegetative growth could involve different mechanisms.  相似文献   

19.
Emmer wheat as the progenitor of common wheat, holds the genetic potentiality for improvement of wheat yield, quality and stress tolerance such as drought and salt. To comprehensively evaluate the salt tolerance of emmer wheat, a total of 30 traits including growth, physiology and photosynthesis related as well as K+ and Na+ content of 30 wild emmer and 14 durum wheat accessions were systematically investigated and compared between normal and saline conditions. Salt tolerance index (STI) based on multiple regression analysis of these traits was calculated and five wild emmer accessions showed high salt tolerance, which could be used as valuable resource for wheat salt tolerance improvement. Furthermore, wild emmer genotypes showed wider trait performance variation compared to durum wheat, indicating the higher genetic diversity in wild emmer wheat. Then, shoot Na+ content, shoot K+/Na+ ratio, root length and root surface area were identified as suitable indexes for salt tolerance evaluation. Na+ exclusion mechanism was found to be playing an important role in response to salt stress in emmer wheat. The salt tolerance in emmer wheat was systematically characterized here, which not only provided the elite germplasm for wheat improvement, but also provided the efficient method and some useful indexes for salt tolerance assessing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号