首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Arabidopsis vacuolar H+‐pyrophosphatase (AVP1), when over‐expressed in transgenic (TG) plants, regulates root and shoot development via facilitation of auxin flux, and enhances plant resistance to salt and drought stresses. Here, we report that TG perennial creeping bentgrass plants over‐expressing AVP1 exhibited improved resistance to salinity than wild‐type (WT) controls. Compared to WT plants, TGs grew well in the presence of 100 mm NaCl, and exhibited higher tolerance and faster recovery from damages from exposure to 200 and 300 mm NaCl. The improved performance of the TG plants was associated with higher relative water content (RWC), higher Na+ uptake and lower solute leakage in leaf tissues, and with higher concentrations of Na+, K+, Cl and total phosphorus in root tissues. Under salt stress, proline content was increased in both WT and TG plants, but more significantly in TGs. Moreover, TG plants exhibited greater biomass production than WT controls under both normal and elevated salinity conditions. When subjected to salt stress, fresh (FW) and dry weights (DW) of both leaves and roots decreased more significantly in WT than in TG plants. Our results demonstrated the great potential of genetic manipulation of vacuolar H+‐pyrophosphatase expression in TG perennial species for improvement of plant abiotic stress resistance.  相似文献   

2.
Salinity and drought are major environmental factors limiting the growth and productivity of alfalfa worldwide as this economically important legume forage is sensitive to these kinds of abiotic stress. In this study, transgenic alfalfa lines expressing both tonoplast NXH and H+‐PPase genes, ZxNHX and ZxVP1‐1 from the xerophyte Zygophyllum xanthoxylum L., were produced via Agrobacterium tumefaciens‐mediated transformation. Compared with wild‐type (WT) plants, transgenic alfalfa plants co‐expressing ZxNHX and ZxVP1‐1 grew better with greater plant height and dry mass under normal or stress conditions (NaCl or water‐deficit) in the greenhouse. The growth performance of transgenic alfalfa plants was associated with more Na+, K+ and Ca2+ accumulation in leaves and roots, as a result of co‐expression of ZxNHX and ZxVP1‐1. Cation accumulation contributed to maintaining intracellular ions homoeostasis and osmoregulation of plants and thus conferred higher leaf relative water content and greater photosynthesis capacity in transgenic plants compared to WT when subjected to NaCl or water‐deficit stress. Furthermore, the transgenic alfalfa co‐expressing ZxNHX and ZxVP1‐1 also grew faster than WT plants under field conditions, and most importantly, exhibited enhanced photosynthesis capacity by maintaining higher net photosynthetic rate, stomatal conductance, and water‐use efficiency than WT plants. Our results indicate that co‐expression of tonoplast NHX and H+‐PPase genes from a xerophyte significantly improved the growth of alfalfa, and enhanced its tolerance to high salinity and drought. This study laid a solid basis for reclaiming and restoring saline and arid marginal lands as well as improving forage yield in northern China.  相似文献   

3.
4.
The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up‐regulation of the type I H+‐PPase from Arabidopsis may result in a higher proton electrochemical gradient, which facilitates enhanced sequestering of ions and sugars into the vacuole, reducing water potential and resulting in increased drought‐ and salt tolerance when compared to wild‐type plants. Furthermore, overexpression of AVP1 stimulates auxin transport in the root system and leads to larger root systems, which helps transgenic plants absorb water more efficiently under drought conditions. Using the same approach, AVP1‐expressing cotton plants were created and tested for their performance under high‐salt and reduced irrigation conditions. The AVP1‐expressing cotton plants showed more vigorous growth than wild‐type plants in the presence of 200 mm NaCl under hydroponic growth conditions. The soil‐grown AVP1‐expressing cotton plants also displayed significantly improved tolerance to both drought and salt stresses in greenhouse conditions. Furthermore, the fibre yield of AVP1‐expressing cotton plants is at least 20% higher than that of wild‐type plants under dry‐land conditions in the field. This research indicates that AVP1 has the potential to be used for improving crop’s drought‐ and salt tolerance in areas where water and salinity are limiting factors for agricultural productivity.  相似文献   

5.
High salinity and nitrogen (N) deficiency in soil are two key factors limiting crop productivity, and they usually occur simultaneously. Here we firstly found that H+‐PPase is involved in salt‐stimulated NO3? uptake in the euhalophyte Salicornia europaea. Then, two genes (named SeVP1 and SeVP2) encoding H+‐PPase from S. europaea were characterized. The expression of SeVP1 and SeVP2 was induced by salt stress and N starvation. Both SeVP1 or SeVP2 transgenic Arabidopsis and wheat plants outperformed the wild types (WTs) when high salt and low N occur simultaneously. The transgenic Arabidopsis plants maintained higher K+/Na+ ratio in leaves and exhibited increased NO3? uptake, inorganic pyrophosphate‐dependent vacuolar nitrate efflux and assimilation capacity under this double stresses. Furthermore, they had more soluble sugars in shoots and roots and less starch accumulation in shoots than WT. These performances can be explained by the up‐regulated expression of ion, nitrate and sugar transporter genes in transgenic plants. Taken together, our results suggest that up‐regulation of H+‐PPase favours the transport of photosynthates to root, which could promote root growth and integrate N and carbon metabolism in plant. This work provides potential strategies for improving crop yields challenged by increasing soil salinization and shrinking farmland.  相似文献   

6.
7.
Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+‐PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high‐throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse‐grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to null segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild‐type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse‐ or field‐grown plants. This study validates our greenhouse‐based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields.  相似文献   

8.
Salt and saline-alkali are major environmental factors limiting the growth and productivity of alfalfa, the most economically important forage legume worldwide. In this study, alfalfa plants transgenic for both ScNHX1 (encoding vacuolar membrane Na+/H+ antiporter from Suaeda corniculata) and ScVP (encoding vacuolar H+-PPase from S. corniculata) were produced by cross-pollination. Transgenic alfalfa plants coexpressing ScVP/ScNHX1 showed enhanced salt and saline-alkali tolerance to 300 or 200 mM NaCl with 100 mM NaHCO3 treatments, compared with wild-type plants. In addition, ScVP/ScNHX1-coexpressing alfalfa plants accumulated more Na+ in leaves and roots than wild-type plants and showed increased tolerance to higher salt and saline-alkali stress. Using the fluorescent carboxy-SNARF probe, the intracellular pH was visualized in the transgenic and wild-type plants under salt and saline-alkali stress. The results showed that the overnight treatment caused a massive change in pH in ScVP/ScNHX1-coexpressing alfalfa plants and they showed that there was significantly higher vacuolar alkalization under salt stress compared with wild-type plants. However, saline-alkali treatment enhanced vacuolar acidification more in the wild-type plants than in transgenic plants. Taken together, our results indicate that coexpression of multiple, effective genes in transgenic plants can enhance resistance to salt and saline-alkali stress.  相似文献   

9.
10.
11.
Transgenic Arabidopsis plants overexpressing the wheat vacuolarNa+/H+ antiporter TNHX1 and H+-PPase TVP1 are much more resistantto high concentrations of NaCl and to water deprivation thanthe wild-type strains. These transgenic plants grow well inthe presence of 200 mM NaCl and also under a water-deprivationregime, while wild-type plants exhibit chlorosis and growthinhibition. Leaf area decreased much more in wild-type thanin transgenic plants subjected to salt or drought stress. Theleaf water potential was less negative for wild-type than fortransgenic plants. This could be due to an enhanced osmoticadjustment in the transgenic plants. Moreover, these transgenicplants accumulate more Na+ and K+ in their leaf tissue thanthe wild-type plants. The toxic effect of Na+ accumulation inthe cytosol is reduced by its sequestration into the vacuole.The rate of water loss under drought or salt stress was higherin wild-type than transgenic plants. Increased vacuolar soluteaccumulation and water retention could confer the phenotypeof salt and drought tolerance of the transgenic plants. Overexpressionof the isolated genes from wheat in Arabidopsis thaliana plantsis worthwhile to elucidate the contribution of these proteinsto the tolerance mechanism to salt and drought. Adopting a similarstrategy could be one way of developing transgenic staple cropswith improved tolerance to these important abiotic stresses. Key words: H+-pyrophosphatase, Na+/H+ antiporter, salt and drought tolerance, sodium sequestration, transgenic Arabidopsis plants  相似文献   

12.
On the basis of microarray analyses of the salt‐tolerant wheat mutant RH8706‐49, a previously unreported salt‐induced gene, designated as TaHPS [Triticum aestivum hypothetical (HPS)‐like protein], was cloned. Real‐time quantitative polymerase chain reaction analyses showed that expression of the gene was induced by abscisic acid, salt and drought. The encoded protein was found to be localized mainly in the plasma membranes. Transgenic Arabidopsis plants overexpressing TaHPS were more tolerant to salt and drought stresses than non‐transgenic wild‐type (WT) plants. Under salt stress, the root cells of the transgenic plants secreted more Na+ and guard cells took up more Ca2+ ions. Compared with wild‐type plants, TaHPS‐expressing transgenic plants showed significantly lower amylase activity and glucose and malic acid levels. Our results showed that the expression of TaHPS inhibited amylase activity, which subsequently led to a closure of stomatal apertures and thus improved plant tolerance to salt and drought.  相似文献   

13.

Background

Calcium-binding proteins that contain EF-hand motifs have been reported to play important roles in transduction of signals associated with biotic and abiotic stresses. To functionally characterize gens of EF-hand family in response to abiotic stress, an MtCaMP1 gene belonging to EF-hand family from legume model plant Medicago truncatula was isolated and its function in response to drought and salt stress was investigated by expressing MtCaMP1 in Arabidopsis.

Methodology/Principal Findings

Transgenic Arabidopsis seedlings expressing MtCaMP1exhibited higher survival rate than wild-type seedlings under drought and salt stress, suggesting that expression of MtCaMP1 confers tolerance of Arabidopsis to drought and salt stress. The transgenic plants accumulated greater amounts of Pro due to up-regulation of P5CS1 and down-regulation of ProDH than wild-type plants under drought stress. There was a less accumulation of Na+ in the transgenic plants than in WT plants due to reduced up-regulation of AtHKT1 and enhanced regulation of AtNHX1 in the transgenic plants compared to WT plants under salt stress. There was a reduced accumulation of H2O2 and malondialdehyde in the transgenic plants than in WT plants under both drought and salt stress.

Conclusions/Significance

The expression of MtCaMP1 in Arabidopsis enhanced tolerance of the transgenic plants to drought and salt stress by effective osmo-regulation due to greater accumulation of Pro and by minimizing toxic Na+ accumulation, respectively. The enhanced accumulation of Pro and reduced accumulation of Na+ under drought and salt stress would protect plants from water default and Na+ toxicity, and alleviate the associated oxidative stress. These findings demonstrate that MtCaMP1 encodes a stress-responsive EF-hand protein that plays a regulatory role in response of plants to drought and salt stress.  相似文献   

14.
Duan XG  Yang AF  Gao F  Zhang SL  Zhang JR 《Protoplasma》2007,232(1-2):87-95
Summary. The vacuolar H+-translocating inorganic pyrophosphatase (H+-PPase) uses pyrophosphate as substrate to generate the proton electrochemical gradient across the vacuolar membrane to acidify vacuoles in plant cells. The heterologous expression of H+-PPase genes (TsVP from Thellungiella halophila and AVP1 from Arabidopsis thaliana) improved the salt tolerance of tobacco plants. Under salt stress, the transgenic seedlings showed much better growth and greater fresh weight than wild-type plants, and their protoplasts had a normal appearance and greater vigor. The cytoplasmic and vacuolar pH in transgenic and wild-type cells were measured with a pH-sensitive fluorescence indicator. The results showed that heterologous expression of H+-PPase produced an enhanced proton electrochemical gradient across the vacuolar membrane, which accelerated the sequestration of sodium ions into the vacuole. More Na+ accumulated in the vacuoles of transgenic cells under salt (NaCl) stress, revealed by staining with the fluorescent indicator Sodium Green. It was concluded that the tonoplast-resident H+-PPase plays important roles in the maintenance of the proton gradient across the vacuolar membrane and the compartmentation of Na+ within vacuoles, and heterologous expression of this protein enhanced the electrochemical gradient across the vacuolar membrane, thereby improving the salt tolerance of tobacco cells. Correspondence: J.-R. Zhang, School of Life Science, Shandong University, 27 Shanda South Road, Jinan, People’s Republic of China 250100.  相似文献   

15.
Drought and salt are major abiotic stresses that adversely affect crop productivity. Thus, identification of factors that confer resistance to these stresses would pave way to increasing agricultural productivity. When grown on soil in green house longer than 5 weeks, transgenic Arabidopsis plants that overexpress an ATP‐binding cassette (ABC) transporter, AtABCG36/AtPDR8, produced higher shoot biomass and less chlorotic leaves than the wild‐type. We investigated whether the improved growth of AtABCG36‐overexpressing plants was due to their improved resistance to abiotic stresses, and found that AtABCG36‐overexpressing plants were more resistant to drought and salt stress and grew to higher shoot fresh weight (FW) than the wild‐type. On the contrary, T‐DNA insertional knockout lines were more sensitive to drought stress than wild‐type and were reduced in shoot FW. To understand the mechanism of enhanced salt and drought resistance of the AtABCG36 overexpressing plants, we measured sodium contents and found that AtABCG36 overexpressing plants were lower in sodium content than the wild‐type. Our data suggest that AtABCG36 contributes to drought and salt resistance in Arabidopsis by a mechanism that includes reduction of sodium content in plants.  相似文献   

16.
H+-ATPase subunit c (VHA-c) is involved in the adaptation to environmental stresses, including salt, drought, and heavy metals. However, it remains unclear whether VHA-c can induce a physiological response related to stress tolerance. To investigate this possibility, we generated transgenic tobacco lines overexpressing a V-ATPase subunit c (LbVHA-c1) gene from Limonium bicolor (Bunge) Kuntze. Compared with wild-type (WT) tobacco, superoxide dismutase (SOD) and peroxidase (POD) activities in the transgenic plants were significantly enhanced under salt stress conditions. The level of malondialdehyde (MDA) in the transgenic plants was significantly lower than that in WT plants grown under salt stress conditions. Moreover, the transgenic plants displayed obviously better growth than the WT plants under salt stress. These results suggest that LbVHA-c1 may confer stress tolerance through enhancing POD and SOD activities, and by protecting membranes from damage by decreasing lipid peroxidation under salt stress.  相似文献   

17.
A cDNA (SsCAX1) encoding a tonoplast-localised Ca2+/H+ exchanger was isolated from a C3 halophyte Suaeda salsa (L.). To clarify the role of SsCAX1 in plant salt tolerance, Arabidopsis plants expressing SsCAX1 were treated with NaCl. Transgenic Arabidopsis plants displayed decreased salt tolerance. Although Na+ content was close to wild-type plants, transgenic plants accumulated more Ca2+ and retained less K+ in leaves than the wild-type plants in salinity. Furthermore, transgenic lines held higher leaf membrane leakage than wild-type lines under NaCl treatment. In addition, transgenic plants showed a 23% increase in vacuolar H+-ATPase activity compared with wild-type plants in normal condition. But the leaf V-H+-ATPase activity had subtle changes in transgenic plants, while significantly increased in wild-type plants under saline condition. These results suggested that regulated expression of Ca2+/H+ antiport was critical for maintenance of cation homeostasis and activity of V-H+-ATPase under saline condition.  相似文献   

18.
High salinity is one of the most serious environmental stresses that limit crop growth. Expansins are cell wall proteins that regulate plant development and abiotic stress tolerance by mediating cell wall expansion. We studied the function of a wheat expansin gene, TaEXPA2, in salt stress tolerance by overexpressing it in tobacco. Overexpression of TaEXPA2 enhanced the salt stress tolerance of transgenic tobacco plants as indicated by the presence of higher germination rates, longer root length, more lateral roots, higher survival rates and more green leaves under salt stress than in the wild type (WT). Further, when leaf disks of WT plants were incubated in cell wall protein extracts from the transgenic tobacco plants, their chlorophyll content was higher under salt stress, and this improvement from TaEXPA2 overexpression in transgenic tobacco was inhibited by TaEXPA2 protein antibody. The water status of transgenic tobacco plants was improved, perhaps by the accumulation of osmolytes such as proline and soluble sugar. TaEXPA2‐overexpressing tobacco lines exhibited lower Na+ but higher K+ accumulation than WT plants. Antioxidant competence increased in the transgenic plants because of the increased activity of antioxidant enzymes. TaEXPA2 protein abundance in wheat was induced by NaCl, and ABA signaling was involved. Gene expression regulation was involved in the enhanced salt stress tolerance of the TaEXPA2 transgenic plants. Our results suggest that TaEXPA2 overexpression confers salt stress tolerance on the transgenic plants, and this is associated with improved water status, Na+/K+ homeostasis, and antioxidant competence. ABA signaling participates in TaEXPA2‐regulated salt stress tolerance.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号