首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
When grown on contaminated soil, hyperaccumulator plants contain high concentrations of metals which may return to the soil after senescence. This work was undertaken to assess the availability of Cd and Zn associated to the leaves of the hyperaccumulator Thlaspi caerulescens after incorporation into an uncontaminated soil. A Zn- and Cd- accumulator population of T. caerulescens was grown on a Cd- and Zn- contaminated soil previously labelled with 109Cd. Leaves (TCL) were harvested, dried, ground and incorporated into the soil at a rate of 2.07 mg Cd kg−1 and 51.9 mg Zn kg−1. Then a pot experiment was conducted for 3 months with rye grass (Lolium perenne) and T. caerulescens. Rye grass was harvested monthly and T. caerulescens at the end of the experiment. Plant biomass was measured, along with the concentration of Cd, Zn and 109Cd. Results showed that water-extractable metals in TCL were 69% for Zn and 33% for Cd. Addition of TCL to soil, depleted growth of rye grass, and improved that of T. caerulescens. At harvest, concentrations of both metals were increased in plants by TCL. Concentrations of Cd in rye grass increased with the cut number, while that of Zn decreased slightly. Rye grass extracted 1.6% of the total Cd and 0.9% of the total Zn, and T. caerulescens extracted up to 22.4% of the Cd and 7% of the Zn. About 94% of the Cd in rye grass and 86% in T. caerulescens was derived from TCL. In conclusion, metals associated with leaves of the hyperaccumulator T. caerulescens were very mobile after incorporation into the soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Zhao  F.J.  Lombi  E.  McGrath  S.P. 《Plant and Soil》2003,249(1):37-43
Thlaspi caerulescens is a Zn and Cd hyperaccumulator, and has been tested for its phytoremediation potential. In this paper we examine the relationships between the concentrations of Zn and Cd in soil and in T. caerulescens shoots, and calculate the rates of Zn and Cd extraction from soil. Using published data from field surveys, field and pot experiments, we show that the concentrations of Zn and Cd in the shoots correlate with the concentrations of Zn and Cd in soils in a log-linear fashion over three orders of magnitude. There is little systematic difference between different populations of T. caerulescens in the relationship between soil and plant Zn concentrations. In contrast, populations from southern France are far superior to those from other regions in Cd accumulation. Bioaccumulation factors (plant to soil concentration ratio) for Zn and Cd decrease log-linearly with soil metal concentration. Model calculations show that phytoremediation using T. caerulescens is feasible when soil is only moderately contaminated with Zn and Cd, and the phytoremediation potential is better for Cd than for Zn if the populations from southern France are used. Recent progress in the understanding of the mechanisms of Zn and Cd uptake by T. caerulescens is also reviewed.  相似文献   

3.
Ma JF  Ueno D  Zhao FJ  McGrath SP 《Planta》2005,220(5):731-736
Thlaspi caerulescens (Ganges ecotype) is able to accumulate large concentrations of cadmium (Cd) and zinc (Zn) in the leaves without showing any toxicity, suggesting a strong internal detoxification. The distribution of Cd and Zn in the leaves was investigated in the present study. Although the Cd and Zn concentrations in the epidermal tissues were 2-fold higher than those of mesophyll tissues, 65–70% of total leaf Cd and Zn were distributed in the mesophyll tissues, suggesting that mesophyll is a major storage site of the two metals in the leaves. To examine the subcellular localisation of Cd and Zn in mesophyll tissues, protoplasts and vacuoles were isolated from plants exposed to 50 M Cd and Zn hydroponically. Pure protoplasts and vacuoles were obtained based on light-microscopic observation and the activities of marker enzymes of cytosol and vacuoles. Of the total Cd and Zn in the mesophyll tissues, 91% and 77%, respectively, were present in the protoplast, and all Cd and 91% Zn in the protoplast were localised in the vacuoles. Furthermore, about 70% and 86% of total Cd and Zn, respectively, in the leaves were extracted in the cell sap, suggesting that most Cd and Zn in the leaves is present in soluble form. These results indicate that internal detoxification of Cd and Zn in Thlaspi caerulescens leaves is achieved by vacuolar compartmentalisation.  相似文献   

4.
Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens   总被引:6,自引:0,他引:6  
For phytoextraction to be successful and viable in environmental remediation, strategies that can optimize plant uptake must be identified. Thlaspi caerulescens is an important hyperaccumulator of Cd and Zn, whether adjusting soil pH is an efficient way to enhance metal uptake by T. caerulescens must by clarified. This study used two soils differing in levels of Cd and Zn, which were adjusted to six different pH levels. Thlaspi caerulescens tissue metal concentrations and 0.1 M Sr(NO3)2 extractable soil metal concentrations were measured. The soluble metal form of both Cd and Zn was greatly increased with decreasing pH. Lowering pH significantly influenced plant metal uptake. For the high metal soil, highest plant biomass was at the lowest soil pH (4.74). The highest shoot metal concentration was at the second lowest pH (5.27). For low metal soil, due to low pH induced Al and Mn toxicity, both plant growth and metal uptake was greatest at intermediate pH levels. The extraordinary Cd phytoextraction ability of T. caerulescens was further demonstrated in this experiment. In the optimum pH treatments, Thlaspi caerulescens extracted 40% and 36% of total Cd in the low and high metal soils, respectively, with just one planting. Overall, decreasing pH is an effective strategy to enhance phytoextraction. But different soils had various responses to acidification treatment and a different optimum pH may exist. This pH should be identified to avoid unnecessarily extreme acidification of soils.  相似文献   

5.
The in situ phytoextraction of cadmium from soils can only be achieved using plants that are both tolerant to high Cd concentrations and able to extract sufficient amounts of the metal. However, very few plant species are capable of remediating Cd polluted soils in a reasonable time frame. This paper aims to show that the population of the hyperaccumulator Thlaspi caerulescens J. & C. Presl. from Viviez (south of France), which has a high Cd-accumulating capability, is an efficient tool to remove Cd from contaminated soils. Roots of T. caerulescensViviez proliferate in hot spots of metals in soils which is particularly advantageous because of heterogeneity of the distribution of metal in polluted soils. Isotopic techniques showed that plants from this population acquire Cd from the same pools as non-accumulating species, but that it was much more efficient than non-hyperaccumulators at removing the metal from the soil labile pool. This is due: to (i) a specific rooting strategy, and (ii) a high uptake rate resulting from the existence in this population of Cd-specific transport channels or carriers in the root membrane. Growth and overall extraction can be improved with appropriate N fertilisation, supplied either as mineral fertilisers or uncontaminated sewage sludge. Selecting bigger plants is possible from within a suitable Cd-accumulating population to improve the phytoextraction process. Growing the Cd-accumulating populations results in a reduction in the availability of Cd and Zn as shown with field and lysimeter experiments conducted for several years. As a result, on a practical aspect, Cd hyperaccumulating populations of T. caerulescens may be used as a tool to efficiently reduce the availability of Cd in soils, providing appropriate populations are used.  相似文献   

6.
In a model hyperaccumulation study a Cd/Zn hyperaccumulator Thlaspi caerulescens accession Ganges and a recently reported Cd/Zn hyperaccumulator Thlaspi praecox grown in increasing Cd and Zn concentrations in the substrate and in field collected polluted soil were compared. Plant biomass, concentrations of Cd and Zn, total chlorophylls and anthocyanins, antioxidative stress parameters and activities of selected antioxidative enzymes were compared. Increasing Cd, but not Zn in the substrate resulted in the increase of biomass of roots and shoots of T. praecox and T. caerulescens. The two species hyperaccumulated Cd in the shoots to a similar extent, whereas T. caerulescens accumulated more Zn in the shoots than T. praecox. Cadmium amendment decreased total chlorophyll concentration and glutathione reductase activity, and increased non-protein thiols concentration only in T. praecox, suggesting that it is less tolerant to Cd than T. caerulescens. In the field-contaminated soil, T. caerulescens accumulated higher Cd concentrations; but as T. praecox produced higher biomass, both species have similar ability to extract Cd.  相似文献   

7.

Background

Metal-hyperaccumulating plant species are plants that are endemic to metalliferous soils and are able to tolerate and accumulate metals in their above-ground tissues to very high concentrations. One such hyperaccumulator, Thlaspi caerulescens, has been widely studied for its remarkable properties to tolerate toxic levels of zinc (Zn), cadmium (Cd) and sometimes nickel (Ni) in the soil, and accumulate these metals to very high levels in the shoot. The increased awareness regarding metal-hyperaccumulating plants by the plant biology community has helped spur interest in the possible use of plants to remove heavy metals from contaminated soils, a process known as phytoremediation. Hence, there has been a focus on understanding the mechanisms that metal-hyperaccumulator plant species such as Thlaspi caerulescens employ to absorb, detoxify and store metals in order to use this information to develop plants better suited for the phytoremediation of metal-contaminated soils.

Scope

In this review, an overview of the findings from recent research aimed at better understanding the physiological mechanisms of Thlaspi caerulescens heavy-metal hyperaccumulation as well as the underlying molecular and genetic determinants for this trait will be discussed. Progress has been made in understanding some of the fundamental Zn and Cd transport physiology in T. caerulescens. Furthermore, some interesting metal-related genes have been identified and characterized in this plant species, and regulation of the expression of some of these genes may be important for hyperaccumulation.

Conclusions

Thlaspi caerulescens is a fascinating and useful model system not only for studying metal hyperaccumulation, but also for better understanding micronutrient homeostasis and nutrition. Considerable future research is still needed to elucidate the molecular, genetic and physiological bases for the extreme metal tolerance and hyperaccumulation exhibited by plant species such as T. caerulescens.Key words: Zn, Cd, Ni, Thlaspi caerulescens, hyperacumulator, phytoremediation, heavy metal  相似文献   

8.
This study used co-cultivated plants as a bioassay to test the hypothesis that the roots of the zinc-hyperaccumulating plant Thlaspi caerulescensmobilize Zn from less-available pools in the soil. Thlaspi caerulescens was grown in uncompartmentalised pots, or pots that were divided by solid or mesh barriers to limit the extent of root intermingling (rhizosphere interaction) with co-cultivated Thlaspi arvense or Festuca rubra. Thlaspi caerulescens did not increase the concentration of Zn in either indicator species, suggesting that T. caerulescens does not strongly mobilize Zn in its rhizosphere. The increase in the shoot mass of T. arvense when its roots were permitted to intermingle with those of T. caerulescens was explained by greater intensity of competition of T. arvense compared to T. caerulescens.There was no effect of co-cultivation with T. caerulescens on the shoot biomass of F. rubra. Despite the absence of increased Zn-availability to the co-cultivated species, the mass of Zn accumulated by T. caerulescens was 3-times greater than the mass of Zn depleted from the pool of extractable-Zn in the soil, measured by extraction with 1 M ammonium nitrate. The results are consistent with the hypothesis that the rapid Zn-uptake systems in the roots of T. caerulescens deplete the soluble-Zn at a rate equal to, or faster than that at which Zn is replenished to the soil solution via plant/microbially mediated mobilization or the Zn-buffering capacity of the soil.  相似文献   

9.
Heavy metal phytoextraction is a soil remediation technique which implies the optimal use of plants to remove contamination from soil. Plants must thus be tolerant to heavy metals, adapted to soil and climate characteristics and able to take up large amounts of heavy metals. Their roots must also fit the spatial distribution of pollution. Their different root systems allow plants to adapt to their environment and be more or less efficient in element uptake. To assess the impact of the root system on phytoextraction efficiency in the field, we have studied the uptake and root systems (root length and root size) of various high biomass plants (Brassica juncea, Nicotiana tabacum, Zea mays and Salix viminalis) and one hyperaccumulator (Thlaspi caerulescens) grown in a Zn, Cu and Cd contaminated soil and compared them with total heavy metal distribution in the soil. Changes from year to year have been studied for an annual (Zea mays) and a perennial plant (Salix viminalis) to assess the impact of the climate on root systems and the evolution of efficiency with time and growth. In spite of a small biomass, T. caerulescens was the most efficient plant for Cd and Zn removal because of very high concentrations in the shoots. The second most efficient were plants combining high metal concentrations and high biomass (willows for Cd and Zn and tobacco for Cu and Cd). A large cumulative root density/aboveground biomass ratio (LA/B), together with a relative larger proportion of fine roots compared to other plants seemed to be additional favourable characteristics for increased heavy metal uptake by T. caerulescens. In general, for all plants correlations were found between L A/B and heavy metal concentrations in shoots (r=0.758***, r=0.594***, r=0.798*** (P<0.001) for Cd, Cu and Zn concentrations resp.). Differences between years were significant because of variations in climatic conditions for annual plants or because of growth for perennial plants. The plants exhibited also different root distributions along the soil profile: T. caerulescens had a shallow root system and was thus best suited for shallow contamination (0.2 m) whereas maize and willows were the most efficient in colonising the soil at depth and thus more applicable for deep contamination (0.7 m). In the field situation, no plant was able to fit the contamination properly due to heterogeneity in soil contamination. This points out to the importance and the difficulty of choosing plant species according to depth and heterogeneity of localisation of the pollution.  相似文献   

10.
Growth, organic acid and phytochelatin accumulation, as well as the activity of several antioxidative enzymes, i.e. superoxide dismutase (SOD), ascorbate peroxidase (APX) guaiacol peroxidase (POX) and catalase (CAT) were investigated under Zn and Cd stress in hydroponically growing plants of Thlaspi caerulescens population from Plombières, Belgium. Tissue Zn and Cd concentration increased (the highest concentration of both was in roots) as the concentration of these metals increased in the nutrient solution. Increasing Zn concentration enhanced plant growth, while with Cd it declined compared to the control. Both metals stimulated malate accumulation in shoots, Zn also caused citrate to increase. Zn did not induce phytochelatin (PC) accumulation. In plants exposed to Cd, PC concentration increased with increasing Cd concentration, but decreased with time of exposure. Under Zn stress SOD activity increased, but APX activity was higher at 500 and 1000 μM Zn and CAT activity only at 500 μM Zn in comparison with the control. CAT activity decreased in Cd- and Zn-stressed plants. The results suggest that relative to other populations, a T. caerulescens population from Plombières, when grown in hydroponics, was characterized by low Zn and Cd uptake and their translocation to shoots and tolerance to both metals. The accumulation of malate and citrate, but not PC accumulation was responsible for Zn tolerance. Cd tolerance seems to be due to neither PC production nor accumulation of organic acids.  相似文献   

11.
The heavy metal hyperaccumulator Thlaspi caerulescens is widespread in France on many kinds of sites and substrates, including Zn/Pb/Cd mine and smelter wastes, Ni-rich serpentine outcrops and a variety of nonmetalliferous soils. Thlaspi caerulescens is remarkable among the metallophytes of France because it accumulates Zn to high concentrations (almost always >0.1%, and often >1% in the dry matter) regardless of the total Zn concentration of the substrate. The extraordinary uptake of Zn from soils of normal Zn concentration draws attention to the need for studies of the mechanisms by which such mobilization and uptake can occur. Different populations of Thlaspi caerulescens in France show considerable variation in their ability to accumulate Cd; individuals in some populations contain as much as 0.1 to 0.4% Cd, the highest levels recorded in vascular plants. The hyperaccumulation of Ni (sometimes exceeding 1%) from serpentine soils in France is also noteworthy. Despite the generally low biomass, some very large individuals occur, giving good potential for selective breeding to improve the value of Thlaspi caerulescens for phytoremediation, especially of Cd. The high Zn uptake from all kinds of soils is a property shared by the related T. brachypetalum, and T. alpinum shows dual Zn- and Ni uptake, depending on the substrate. The extent to which other species of Thlaspi occurring in France exhibit metal accumulation is also discussed.  相似文献   

12.
Thlaspi caerulescens is a metallophyte that is able to hyperaccumulate Zn. In the present study the subcellular compartmentation of Zn was investigated in roots and leaves of this species by means of X-ray microanalysis. Leaves accumulated higher average Zn concentrations than roots. In roots of plants exposed to 10 μM Zn, Zn concentrations in the apoplast were similar to those in vacuoles, while in plants treated with 100 μM Zn considerably higher Zn concentrations were detected in vacuoles than in the apoplast. In epidermal and sub-epidermal cells of leaves of plants from both treatments, Zn mainly accumulated in vacuoles and, to a lesser extent, in the apoplast. In vacuoles from plants exposed to 100 μM Zn, high Zn concentrations were associated with variable amounts of P, Ca and K. In leaves, the highest Zn concentrations (13,600 μg g?1 d.m.) were found in globular crystals present in many vacuoles of epidermal and subepidermal cells. Smaller deposits with a variable Zn concentration between 1,000 and 18,300 μg g?1 d.m. were observed in the epidermal and subepidermal cells of roots. Both the high Zn/P element ratios found in the crystals and the absence of Mg indicate that, in contrast to other plant species, myo-inositol hexaphosphate (phytate) is not the main storage form for Zn in Thlaspi caerulescens.  相似文献   

13.
Phytoextraction is the removal of metals from contaminated soils into harvested plant tissues. The rate of phytoextraction is governed by both soil and plant characteristics. Most effort has focused on identifying appropriate plants for phytoextraction, but the benefits from this effort will be marginal unless the metals are in phytoavailable forms in the rhizosphere. The concentration of a metal in the rhizosphere can be estimated using solute transfer models that incorporate: the metal concentration in the bulk soil solution, the buffer power of the soil, diffusion coefficient for the metal, water movement, root size and morphology, and the rate of entry of metal into the roots. Here a solute transfer model is developed to predict the concentration of Zn in the rhizosphere solution ([Zn]ext) of Thlaspi caerulescens, a hyperaccumulator species that could be exploited for Zn phytoextraction. The model predicts that Zn accumulation by T. caerulescens is sub-optimal when the Zn concentration in the bulk soil solution is <27 M. Such a high [Zn]ext is rare in contaminated agricultural soils, but is possible in the metalliferous substrates where T. caerulescens is endemic. Sensitivity analyses indicate that Zn diffusion is more important than transpiration-driven mass flow for Zn delivery to the root, implying that management of soil physical and hydrological properties will improve phytoextraction. Sensitivity analyses also imply that strategies to enhance the Zn absorption power of the root will not necessarily be successful for enhancing phytoextraction per se. Thus, research into enhancing Zn availability and mobility in soil will be as important as understanding and manipulating Zn uptake by plants. In general, such models can be used to identify constraints to efficient phytoextraction (whether plant or soil) and to determine whether commercial phytoextraction is feasible.  相似文献   

14.
The aim of this study was to show the potential of Thlaspi caerulescens in the cleaning‐up of a moderately Zn ‐contaminated soil and to elucidate tolerance mechanisms at the cellular and subcellular level for the detoxification of the accumulated metal within the leaf. Measured Zn concentrations in shoots were high and reached a maximum value of 83 mmol kg ? 1 dry mass, whereas total concentrations of Zn in the roots were lower (up to 13 mmol kg ? 1). In order to visualize and quantify Zn at the subcellular level in roots and leaves, ultrathin cryosections were analysed using energy‐dispersive X‐ray micro‐analysis. Elemental maps of ultrathin cryosections showed that T. caerulescens mainly accumulated Zn in the vacuoles of epidermal leaf cells and Zn was almost absent from the vacuoles of the cells from the stomatal complex, thereby protecting the guard and subsidiary cells from high Zn concentrations. Observed patterns of Zn distribution between the functionally different epidermal cells were the same in both the upper and lower epidermis, and were independent of the total Zn content of the plant. Zinc stored in vacuoles was evenly distributed and no Zn‐containing crystals or deposits were observed. From the elemental maps there was no indication that P, S or Cl was associated with the high Zn concentrations in the vacuoles. In addition, Zn also accumulated in high concentrations in both the cell walls of epidermal cells and in the mesophyll cells, indicating that apoplastic compartmentation is another important mechanism involved in zinc tolerance in the leaves of T. caerulescens.  相似文献   

15.
Some plant species growing on metalliferous soils are able to accumulate heavy metals in their shoots up to very high concentrations, but the selective advantage of this behaviour is still unknown. The most popular hypothesis, that metals protect plants against herbivores, has been tested several times in laboratory conditions, with contradictory results. We carried out the first large-scale test of the defence hypothesis in eight natural populations of the model Zn hyperaccumulator Thlaspi caerulescens J. and C. Presl (Brassicaceae). In two climatic regions (temperate, Belgium–Luxembourg, and Mediterranean, southern France), we worked in metalliferous and in normal, uncontaminated environments, with plants spanning a wide range of Zn concentrations. We also examined the importance of glucosinolates (main secondary metabolites of Brassicaceae) as antiherbivore defences. When exposed to natural herbivore populations, T. caerulescens suffered lower herbivory pressures in metal-enriched soils than in normal soils, both in Belgium–Luxembourg and in southern France. The trapping of gastropods shows an overall lower population density in metalliferous compared to normal environments, which suggests that herbivory pressure from gastropods is lower on metalliferous soils. In addition, foliar concentration of glucosinolates was constitutively lower in all populations from metal-enriched soils, suggesting that these have evolved towards lower investment in organic defences in response to lower herbivory pressure. The Zn concentration of plants had a protective role only for Belgian metallicolous plants when transplanted in normal soils of Luxembourg. These results do not support the hypothesis that Zn plays a key role in the protection of T. caerulescens against enemies. In contrast, glucosinolates appear to be directly involved in the defence of this hyperaccumulator against herbivores.  相似文献   

16.
The NRAMP gene family encodes integral membrane protein and mediates the transport of Fe, however, its function in transport of toxic metal ions is not very clear in plants. TcNRAMP3 was isolated from Thlaspi caerulescens, and encoded a metal transporter member of the NRAMP family. TcNRAMP3 was predominantly expressed in roots of T. caerulescens by semi-quantitative RT-PCR. The expression of TcNRAMP3 was induced by iron starvation and by the heavy metals Cd and Ni in roots. TcNRAMP3 was able to rescue growth of an iron uptake fet3fet4 mutant yeast strain, suggesting a possible role in iron transport. Expression of TcNRAMP3 in yeast increased Cd sensitivity and Cd content, while it enhanced the Ni resistance and reduced Ni accumulation, indicating that TcNRAMP3 could accumulate Cd and exclude Ni in yeast. Furthermore, overexpression of TcNRAMP3 in tobacco resulted in slight Cd sensitivity of root growth and did not influence Ni resistance. These results suggested that TcNRAMP3 played a role in metal cation homeostasis in plant.  相似文献   

17.
The aim of this work was to study, in a rhizobox experiment, the phytoextraction of metals by the hyperaccumulator plant Thlaspi caerulescens in relation to the heterogeneity of metal pollution. Six treatments were designed with soils containing various levels of metals. Homogeneous soils and inclusions of soils in other soil matrices were prepared in order to vary metal concentration and localization. Growth parameters of the plant (rosette diameter and shoot biomass) and localization of roots and shoot uptake of Zn, Cd, Ca, and Mg were determined after 10 weeks of growth. The plants grown on the polluted industrial soils provided a larger biomass and had lower mortality rates than those grown on the agricultural soil. Moreover, these plants accumulated more Zn and Cd (up to 17,516 and 375 mg kg(-1) DM, respectively) than plants grown on the agricultural soil (up to 7300 mg Zn kg(-1) and 83 mg Cd kg(-1) DM). The roots preferentially explored metal-contaminated areas. The exploration of polluted soil inclusions by the roots was associated with a higher extraction of metals. Zinc and Cd in the shoots of Thlaspi caerulescens were negatively correlated with Ca and Mg concentrations; however, the soil supply for these two elements was identical. This suggests that there is competition for the uptake of these elements and that Zn is preferentially accumulated.  相似文献   

18.
Abstract

Hydroponic, greenhouse and field experiments were conducted to explore the potential of pokeweed (Phytolacca americana L.) to accumulate Zn and Cd from nutrient solutions and contaminated soils. The hydroponic results confirmed that this native species is a strong Zn and Cd bioaccumulator that does not experience severe phytotoxicity until quite high root and shoot concentrations, approaching 4000 and 1600?mg?kg?1 of Zn, and 1500 and 500?mg?kg?1 of Cd, respectively. These high Zn and Cd concentrations were accompanied by increased sulfur and lower manganese in both shoots and roots. However, in field and greenhouse trials with soils historically contaminated by a number of heavy metals including Zn and Cd, concentrations of Zn and Cd in shoots of P. americana reached concentrations less than 30% and 10%, respectively, of those achieved with hydroponics. The main constraint to phytoremediation of soils by P. americana was the low concentrations of Zn and Cd in soil solution. Pretreatment of the metal-contaminated soil by oxalic acid increased soluble Cd and Zn but failed to increase plant uptake of either metal, a possible result of higher solubility of competing metal ions (Cu, Mn) or low bioavailability of Cd and Zn-oxalate complexes.  相似文献   

19.
Several populations with different metal tolerance, uptake and root-to-shoot transport are known for the metal hyperaccumulator plant Thlaspi caerulescens. In this study, genes differentially expressed under various Zn exposures were identified from the shoots of two T. caerulescens accessions (calaminous and non-calaminous) using fluorescent differential display RT-PCR. cDNA fragments from 16 Zn-responsive genes, including those encoding metallothionein (MT) type 2 and type 3, MRP-like transporter, pectin methylesterase (PME) and Ole e 1-like gene as well as several unknown genes, were eventually isolated. The full-length MT2 and MT3 sequences differ from those previously isolated from other Thlaspi accessions, possibly representing new alleles or isoforms. Besides the differential expression in Zn exposures, the gene expression was dependent on the accession. Thlaspi homologues of ClpP protease and MRP transporter were induced at high Zn concentrations. MT2 and PME were expressed at higher levels in the calaminous accession. The MTs and MRP transporter expressed in transgenic yeasts were capable of conferring Cu and Cd tolerance, whereas the Ole e 1-like gene enhanced toxicity to these metals. The MTs increased yeast intracellular Cd content. As no significant differences were found between Arabidopsis and Thlaspi MTs, they apparently do not differ in their capacity to bind metals. However, the higher levels of MT2 in the calaminous accession may contribute to the Zn-adapted phenotype.  相似文献   

20.
Embellisia thlaspis is described as a new species from the roots of the cruciferThlaspi caerulescens. The host plant was growing in soil in an area of disused zinc and lead mines where high levels of heavy metals have been recorded. Examining this novel fungus using SEM, the detailed structure of the conidiogenous loci confirms earlier observations of this genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号