首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Massive digitization of natural history collections (NHC) has opened the door for researchers to conduct inferential studies on the collection of biological diversity across space and time. The widespread use of NHCs in scientific research makes it essential to characterize potential sources of spatial bias. In this study, we assessed spatial patterns in records from the Australian Virtual Herbarium (AVH), based on >3 000 000 vouchered specimens of around 21 000 native plant species. The AVH is the main database for describing Australia's flora, and identifying its limitations is of paramount interest for the validity of conservation and environmental studies. We characterized how sampling effort is distributed across each Interim Bioregion of Australia (IBRA), then asked: (i) How complete are species inventories for each bioregion? We define completeness (C) as the ratio of observed to estimated species richness, using the Chao 1 estimator, (ii) How is sampling effort related to a commonly used Human Influence Index (HII)? and (iii) What is the probability that additional collections would result in the identification of previously unrecorded species in each bioregion? Sampling effort across bioregions is unequal, which partially reflects the collecting behaviour of naturalists in relation to species richness patterns. The density of records in bioregions ranges from 0.02–8.37 km?2. At the bioregional scale, completeness is generally high with 79% of bioregions estimated to have records for at least 80% of their species. Completeness is partly explained by sampling effort (r = 0.43, p = 0.01), although some bioregions (e.g. Northern Kimberley and Burt Plain) have high completeness yet relatively low sampling effort. The inventory of Hampton, however, is substantially less complete than other bioregions (C = 0.66). Bioregions with high HII consistently have high completeness, while regions with low HII span the full range of completeness values. We calculated that an additional specimen collected from a bioregion has a 0.33% (Wet Tropics) to 11.7% (Arnhem Coast) probability of representing a new species for that region. Our assessment can assist with directing future systematic survey efforts by identifying bioregions where additional surveying may result in the greatest return, in terms of increasing knowledge of species richness and diversity.  相似文献   

2.
3.

Distribution data sharing in global databases (e.g. GBIF) allowed the knowledge synthesis in several biodiversity areas. However, their Wallacean shortfalls still reduce our capacity to understand distribution patterns. Including exclusive records from other databases, such as national ones (e.g. SpeciesLink), could mitigate these shortfall problems, but it remains not evaluated. Therefore, we assessed whether (i) the inventory completeness, (ii) taxonomic contribution and (iii) spatial biases could be improved when integrating both global and national biodiversity databases. Using Amazonian epiphytes as a model, we compared the available taxonomic information spatially between GBIF and SpeciesLink databases using a species contribution index. We obtained the inventory completeness from sources using species accumulation curves and assessed their spatial biases by constructing spatial autoregressive models. We found that both databases have a high amount of exclusive records (GBIF: 36.7%; SpeciesLink: 21.7%) and species (17.8%). Amazonia had a small epiphyte inventory completeness, but it was improved when we analyzed both databases together. Individually, both database records were biased to sites with higher altitude, population and herbarium density. Together, river density appeared as a new predictor, probably due to the higher species contribution of SpeciesLink along them. Our findings provide strong evidence that using both global and national databases increase the overall biodiversity knowledge and reduce inventory gaps, but spatial biases may persist. Therefore, we highlight the importance of aggregating more than one database to understand biodiversity patterns, to address conservation decisions and direct shortfalls more efficiently in future studies.

  相似文献   

4.
The western Antarctic Peninsula (WAP) is a bellwether of global climate change and natural laboratory for identifying interactions between climate and ecosystems. The Palmer Long‐Term Ecological Research (LTER) project has collected data on key ecological and environmental processes along the WAP since 1993. To better understand how key ecological parameters are changing across space and time, we developed a novel seascape classification approach based on in situ temperature, salinity, chlorophyll a, nitrate + nitrite, phosphate, and silicate. We anticipate that this approach will be broadly applicable to other geographical areas. Through the application of self‐organizing maps (SOMs), we identified eight recurrent seascape units (SUs) in these data. These SUs have strong fidelity to known regional water masses but with an additional layer of biogeochemical detail, allowing us to identify multiple distinct nutrient profiles in several water masses. To identify the temporal and spatial distribution of these SUs, we mapped them across the Palmer LTER sampling grid via objective mapping of the original parameters. Analysis of the abundance and distribution of SUs since 1993 suggests two year types characterized by the partitioning of chlorophyll a into SUs with different spatial characteristics. By developing generalized linear models for correlated, time‐lagged external drivers, we conclude that early spring sea ice conditions exert a strong influence on the distribution of chlorophyll a and nutrients along the WAP, but not necessarily the total chlorophyll a inventory. Because the distribution and density of phytoplankton biomass can have an impact on biomass transfer to the upper trophic levels, these results highlight anticipated links between the WAP marine ecosystem and climate.  相似文献   

5.
Measuring the completeness of survey inventories created by citizen-science initiatives can identify the strengths and shortfalls in our knowledge of where species occur geographically. Here, we use occurrence information from eBird to measure the survey completeness of the world's birds in this database at three temporal resolutions and four spatial resolutions across the annual cycle during the period 2002 to 2018. Approximately 84% of the earth's terrestrial surface contained bird occurrence information with the greatest concentrations occurring in North America, Europe, India, Australia and New Zealand. The largest regions with low levels of survey completeness were located in central South America, northern and central Africa, and northern Asia. Across spatial and temporal resolutions, survey completeness in regions with occurrence information was 55–74% on average, with the highest values occurring at coarser temporal and coarser spatial resolutions and during spring migration within temperate and boreal regions. Across spatial and temporal resolutions, survey completeness exceeded 90% within ca 4–14% of the earth's terrestrial surface. Survey completeness increased globally from 2002 to 2018 across all months of the year at a rate of ca 3% yr–1. The slowest gains occurred in Africa and in montane regions, and the most rapid gains occurred in India and in tropical forests after 2012. Thus, occurrence information from a global citizen-science program for a charismatic and well-studied taxon was geographically broad but contained heterogeneous patterns of survey completeness that were strongly influenced by temporal and especially spatial resolution. Our results identify regions where the application of additional effort would address current knowledge shortfalls, and regions where the maintenance of existing effort would benefit long-term monitoring efforts. Our findings highlight the potential of citizen science initiatives to further our knowledge of where species occur across space and time, information whose applications under global change will likely increase.  相似文献   

6.
Personality is both a reflection of the bio-behavioral profile of individuals and a summary of how they typically interact with their physical and social world. Personality is usually defined as having distinct behavioral characteristics, which are assumed to be consistent over time and across contexts. Like other mammals, primates have individual differences in personality. Although temporal consistency is sometimes measured in primates, and contextual consistency is sometimes measured across experimental contexts, it is rare to measure both in the same individuals and outside of experimental settings. Here, we aim to measure both temporal and contextual consistency in chimpanzees, assessing their personality with behavioral observations from naturally occurring contexts (i.e., real-life settings). We measured personality-based behaviors in 22 sanctuary chimpanzees, in the contexts of feeding, affiliation, resting, and solitude, across two time periods, spanning 4 years. Of the 22 behaviors recorded, about 64% were consistent across two to four contexts and 50% were consistent over time. Ten behaviors loaded significantly onto three trait components: explorativeness, boldness-sociability, and anxiety-sociability, as revealed by factor analysis. Like others, we documented individual differences in the personality of chimpanzees based on reliably measured observations in real-life contexts. Furthermore, we demonstrated relatively strong, but not absolute, temporal, and contextual consistency in personality-based behaviors. We also found another aspect of individual differences in personality, specifically, the extent to which individual chimpanzees show consistency. Some individuals showed contextual and temporal consistency, whereas others show significant variation across behaviors, contexts, and/or time. We speculate that the relative degree of consistency in personality may vary within chimpanzees. It may be that different primate species vary in the extent to which individuals show consistency of personality traits. Our behavioral-based assessment can be used with wild populations, increasing the validity of personality studies, facilitating comparative studies and potentially being applicable to conservation efforts.  相似文献   

7.
Aim Our aims were (1) to compare observed, estimated and predicted patterns of species richness using the Australian native Asteraceae as an example, (2) to identify candidates for hotspots of diversity for the study group, and (3) to examine the distortion of our perception of the spatial distribution of species richness through uneven or misdirected sampling efforts. Location Australia. Methods Based on data from Australia’s Virtual Herbarium, we calculated and visualized observed species richness, the Chao1 estimate of richness, the C index of collecting completeness, and an estimate of richness derived from environmental niche modelling for grid cells at a resolution of 1°. The 20 cells with the highest diversity values were used to define hotspots of diversity. Results Uneven collecting activity results in misleading diversity patterns for the family Asteraceae. While observed species richness is much higher in central Australia than in other parts of the arid interior, this is an artefact resulting from the area being a hotspot of collecting activity. The mountain ranges of south‐eastern Australia and Tasmania are candidates for unbiased hotspots of species richness. Main conclusions Vast areas of the Australian interior are insufficiently sampled on a local scale, although most of them can be expected to be relatively species poor. Some areas in the south‐east and south‐west of the continent remain undersampled relative to their high species richness. Observed species numbers, estimators and environmental niche‐modelling all have their unique advantages and disadvantages for the inference of patterns of diversity.  相似文献   

8.
Invertebrate diversity is seldom included in conservation assessments, primarily because information is lacking. Broad surveys may be too costly, difficult or ineffective. Here we assess a ‘shopping basket’ approach, targeting 17 taxa using a range of methods. We sampled 43 one‐hectare sites stratified within 560 km2 of heterogenous African savanna. We achieved up to 80% sampling completeness for epigaeic fauna, but generally much lower completeness (around 50%) for plant‐dwelling and flying taxa. For the former we identified duplication of methods, and for the latter, addition of methods and increased temporal variation rather than effort would improve completeness. Within a taxon, sampling 75% of species present required, on average, about 784 individuals. When considering the local richness, 75% completeness required about 27 individuals per species, but these figures require validation in other areas. About 58 sites were required to achieve 75% sampling completeness, translating to about one site per 10 km2. The percentage of species sampled only in a particular month ranged between 4% and 46%, with greater temporal effects recorded for flying taxa than for epigaeic ones. The trend was similar for species unique to a particular year, with the most extreme case being 67% of the butterfly species sampled one year not previously recorded. We demonstrated and evaluated the feasibility of a simultaneous multi‐taxon survey approach to produce data useful for conservation planning and monitoring. We strongly recommend a quantified approach for surveys and inventories, with details such as specific methods decided based on the biome sampled, and taxonomic expertise available for identification.  相似文献   

9.
Monitoring programs for diverse tropical butterfly assemblages are scarce, and temporal diversity patterns in these assemblages are poorly understood. We adopted an additive partitioning approach to determine how temporal butterfly species richness was structured at the levels of days, months, and years in five tropical/subtropical sites across three continents covering up to 9 years of monitoring. We found that observed butterfly richness was not uniformly distributed across temporal extents. Butterfly species composition differed across months and years, potentially accounting for the fact that temporal butterfly species richness contributed a high proportion to total species richness. We further examined how species richness of common and uncommon species (> and <0.5% of total abundance, respectively) were structured across temporal extents. The results showed that the common species relative contribution to total species richness was higher at lower‐temporal levels, whereas uncommon species contributed more at higher‐temporal resolutions. This suggests that long‐term sampling will be more effective in capturing patterns of rare species and the total species pool while lower‐temporal level sampling (e.g., daily or weekly) may be more useful in examining common species demographic patterns. We therefore encourage careful consideration of temporal replication at different extents in developing butterfly monitoring schemes. Long‐term monitoring is essential for improvement in the resolution of species estimation and diversity patterns for tropical ecosystems. Abstract in Chinese is available with online material.  相似文献   

10.
The 24 extant crocodylian species are the remnants of a once much more diverse and widespread clade. Crocodylomorpha has an approximately 230 million year evolutionary history, punctuated by a series of radiations and extinctions. However, the group's fossil record is biased. Previous studies have reconstructed temporal patterns in subsampled crocodylomorph palaeobiodiversity, but have not explicitly examined variation in spatial sampling, nor the quality of this record. We compiled a dataset of all taxonomically diagnosable non‐marine crocodylomorph species (393). Based on the number of phylogenetic characters that can be scored for all published fossils of each species, we calculated a completeness value for each taxon. Mean average species completeness (56%) is largely consistent within subgroups and for different body size classes, suggesting no significant biases across the crocodylomorph tree. In general, average completeness values are highest in the Mesozoic, with an overall trend of decreasing completeness through time. Many extant taxa are identified in the fossil record from very incomplete remains, but this might be because their provenance closely matches the species’ present‐day distribution, rather than through autapomorphies. Our understanding of nearly all crocodylomorph macroevolutionary ‘events’ is essentially driven by regional patterns, with no global sampling signal. Palaeotropical sampling is especially poor for most of the group's history. Spatiotemporal sampling bias impedes our understanding of several Mesozoic radiations, whereas molecular divergence times for Crocodylia are generally in close agreement with the fossil record. However, the latter might merely be fortuitous, i.e. divergences happened to occur during our ephemeral spatiotemporal sampling windows.  相似文献   

11.
Extensive distributional data bases are key tools in ecological research, and good-quality data are required to provide reliable conservation strategies and an understanding of biodiversity patterns and processes. Although the evaluation of data bases requires the incorporation of estimates of sampling effort and bias, no studies have focused on these aspects for freshwater biodiversity data. We used here a comprehensive data base of water beetles from the Iberian Peninsula and the Balearic Islands, and examine whether these data provide an unbiased, reliable picture of their diversity and distribution in the study area. Based on theoretical estimates using the Clench function on the accumulated number of records as a surrogate of sampling effort, about a quarter of the Iberian and Balearic 50 × 50 km Universal Transverse Mercator grid cells can be considered well prospected, with more than 70% of the theoretical species richness actually recorded. These well-surveyed cells are not evenly distributed across biogeographical and physicoclimatic subregions, reflecting some geographical bias in the distribution of sampling effort. Our results suggest that recording was skewed by relatively simple variables affecting collector activity, such as the perceived 'attractiveness' of mountainous landscapes and protected areas with recently described species, and accessibility of sampling sites (distance from main research centres). We emphasize the importance of these evaluation exercises, which are useful to locate areas needed of further sampling as well as to identify potential biases in the distribution of current biodiversity patterns.  相似文献   

12.
Extensive biological databases are valuables ecological research tools that form the basis of biodiversity studies. However, it is essential to perform an assessment of the inventories’ completeness for their use in ecological and conservational research, and this is especially true for non-emblematic groups. Using four exhaustive databases compiled for four taxonomic groups (aquatic beetles, aquatic bugs, bryophytes and orchids), in a semiarid Mediterranean region, the aim of this study was to estimate the degree of completeness for the inventory of each taxa and to identify those spatial units that could be considered to be sufficiently-surveyed (UTM 10 × 10 km squares). Then, the degree of environmental representativeness of the databases was assessed, as well as those factors that could have caused biased sampling efforts. Lastly, the usefulness of each database for conservational purposes was discussed. The results of the present study highlighted the lack of complete and extensive inventory data; as the best sampled group did not even reach 25% of sufficiently-surveyed squares in the territory (in the case of aquatic bugs) and none of the squares presented reliable inventories in the case of bryophytes. Although these results suggested that recording was skewed by relatively simple climatic variables, the sufficiently-surveyed squares were evenly distributed across physioclimatic subregions, what enables their use in further ecological studies. The authors would like to emphasise the potential of these procedures to locate areas in need of further sampling as well as to aid in the design of more effective regional conservation schemes.  相似文献   

13.
Primary biodiversity data constitute observations of particular species at given points in time and space. Open‐access electronic databases provide unprecedented access to these data, but their usefulness in characterizing species distributions and patterns in biodiversity depend on how complete species inventories are at a given survey location and how uniformly distributed survey locations are along dimensions of time, space, and environment. Our aim was to compare completeness and coverage among three open‐access databases representing ten taxonomic groups (amphibians, birds, freshwater bivalves, crayfish, freshwater fish, fungi, insects, mammals, plants, and reptiles) in the contiguous United States. We compiled occurrence records from the Global Biodiversity Information Facility (GBIF), the North American Breeding Bird Survey (BBS), and federally administered fish surveys (FFS). We aggregated occurrence records by 0.1° × 0.1° grid cells and computed three completeness metrics to classify each grid cell as well‐surveyed or not. Next, we compared frequency distributions of surveyed grid cells to background environmental conditions in a GIS and performed Kolmogorov–Smirnov tests to quantify coverage through time, along two spatial gradients, and along eight environmental gradients. The three databases contributed >13.6 million reliable occurrence records distributed among >190,000 grid cells. The percent of well‐surveyed grid cells was substantially lower for GBIF (5.2%) than for systematic surveys (BBS and FFS; 82.5%). Still, the large number of GBIF occurrence records produced at least 250 well‐surveyed grid cells for six of nine taxonomic groups. Coverages of systematic surveys were less biased across spatial and environmental dimensions but were more biased in temporal coverage compared to GBIF data. GBIF coverages also varied among taxonomic groups, consistent with commonly recognized geographic, environmental, and institutional sampling biases. This comprehensive assessment of biodiversity data across the contiguous United States provides a prioritization scheme to fill in the gaps by contributing existing occurrence records to the public domain and planning future surveys.  相似文献   

14.
Non‐avian theropods were a highly successful clade of bipedal, predominantly carnivorous, dinosaurs. Their diversity and macroevolutionary patterns have been the subject of many studies. Changes in fossil specimen completeness through time and space can bias our understanding of macroevolution. Here, we quantify the completeness of 455 non‐avian theropod species using the skeletal completeness metric (SCM), which calculates the proportion of a complete skeleton preserved for a specimen. Temporal patterns of theropod skeletal completeness show peaks in the Carnian, Oxfordian–Kimmeridgian and Barremian–Aptian, and lows in the Berriasian and Hauterivian. Lagerstätten primarily drive the peaks in completeness and observed taxonomic diversity in the Oxfordian–Kimmeridgian and the Barremian–Aptian. Theropods have a significantly lower distribution of completeness scores than contemporary sauropodomorph dinosaurs but change in completeness through time for the two groups shows a significant correlation when conservation Lagerstätten are excluded, possibly indicating that both records are primarily driven by geology and sampling availability. Our results reveal relatively weak temporal sampling biases acting on the theropod record but relatively strong spatial and environmental biases. Asia has a significantly more complete record than any other continent, the mid northern latitudes have the highest abundance of finds, and most complete theropod skeletons come from lacustrine and aeolian environments. We suggest that these patterns result from historical research focus, modern climate dynamics, and depositional transportation energy plus association with conservation Lagerstätten, respectively. Furthermore, we find possible ecological biases acting on different theropod subgroups, but body size does not influence theropod completeness on a global scale.  相似文献   

15.
Stranded cetaceans have long intrigued naturalists because their causation has escaped singular explanations. Regardless of cause, strandings also represent a sample of the living community, although their fidelity has rarely been quantified. Using commensurate stranding and sighting records compiled from archived datasets representing nearly every major ocean basin, I demonstrated that the cetacean stranding record faithfully reflects patterns of richness and relative abundance in living communities, especially for coastlines greater than 2000 km and latitudinal gradients greater than 4°. Live-dead fidelity metrics from seven different countries indicated that strandings were almost always richer than live surveys; richness also increased with coastline length. Most death assemblages recorded the same ranked relative abundance as living communities, although this correlation decreased in strength and significance at coastline lengths greater than 15,000 km, highlighting the importance of sampling diversity at regional scales. Rarefaction analyses indicated that sampling greater than 10 years generally enhanced the completeness of death assemblages, although protracted temporal sampling did not substitute for sampling over longer coastlines or broader latitudes. Overall, this global live-dead comparison demonstrated that strandings almost always provided better diversity information about extant cetacean communities than live surveys; such archives are therefore relevant for macroecological and palaeobiological studies of cetacean community change through time.  相似文献   

16.
Although numerous studies have investigated changes in soil microbial communities across space, questions about the temporal variability in these communities and how this variability compares across soils have received far less attention. We collected soils on a monthly basis (May to November) from replicated plots representing three land-use types (conventional and reduced-input row crop agricultural plots and early successional grasslands) maintained at a research site in Michigan, USA. Using barcoded pyrosequencing of the 16S rRNA gene, we found that the agricultural and early successional land uses harbored unique soil bacterial communities that exhibited distinct temporal patterns. α-Diversity, the numbers of taxa or lineages, was significantly influenced by the sampling month with the temporal variability in α-diversity exceeding the variability between land-use types. In contrast, differences in community composition across land-use types were reasonably constant across the 7-month period, suggesting that the time of sampling is less important when assessing β-diversity patterns. Communities in the agricultural soils were most variable over time and the changes were significantly correlated with soil moisture and temperature. Temporal shifts in bacterial community composition within the successional grassland plots were less predictable and are likely a product of complex interactions between the soil environment and the more diverse plant community. Temporal variability needs to be carefully assessed when comparing microbial diversity across soil types and the temporal patterns in microbial community structure can not necessarily be generalized across land uses, even if those soils are exposed to the same climatic conditions.  相似文献   

17.
The distribution of tropical plant and animal diversity is still poorly documented, especially at spatial resolutions of practical use for conservation. In the present study, we evaluated the level to which geographical incomplete data availability of species occurrence affects the perception of biodiversity patterns (species richness and endemism) among pteridophytes in Bolivia. We used a data base of Bolivian pteridophytes (27,501 records), divided it into three time periods (1900–70, up to 1990 and up to 2006), and created grid-files at 15'-resolution for species richness and endemism. For each of these biodiversity properties we estimated the species richness (Chao 2) and the index of sampling completeness (C index) per grid, and then all these variables at both species richness and endemism were correlated. Patterns of richness were fairly consistent along all periods; the richest areas were placed along the humid-montane forest, even though they were strongly influenced by collecting intensity. Endemism had a lower degree of correlation with collecting intensity, but varied much more strongly through time than species richness. According to the C index, which gives the ratio between estimated (by Chao 2) and recorded values of species richness and endemism, both biodiversity properties tended to be undersampled in the richest grid cells. Inter-temporal correlations showed sharper differences of correlations for endemism than species richness. Consequently, already in 1970, botanists had a correct idea of the spatial distribution of pteridophyte richness in Bolivia (even though the magnitude was grossly underestimated). In contrast, patterns of endemism, which are of high conservation importance, may not even today be reliably known.  相似文献   

18.
Summary

Seasonality and community structure of Phanaeini (Coleoptera: Scarabaeidae) in French Guiana : study by mass sampling using large flight interception traps. Phanaeini is a neotropical tribe of scarabs mostly dung or carrion feeders, generally of large size. This paper analyses data collected with large window flight interception traps set on nine forest sites in French Guiana with a primary goal of biotic inventory. The study deals with three main questions: 1) What is the spatial structure of communities and are there some species indicators of secondary forests and others of pristine conditions? 2) What is the temporal structure of the community and is there a stable pattern of seasonality between years and sites? 3) Between close species, is there a temporal asynchrony? Our samples contain more than 9,700 identified specimens, nine complete year series on four sites including a four years continuous survey near Cayenne. We found a significantly lower diversity (Shannon and Simpson index) on the most fragmented and hunted sites. A more equitable repartition of species and a relative abundance of the larger species appear typical of undisturbed sites. Other observations reinforce the hypothesis that there is a fast and huge modification in Phanaeini community structure on the most accessible and disturbed sites. Seasonal pattern shows an abundance peak at the beginning of the rainy season (December or January), a medium abundance during the rainy season with sometimes secondary peaks and a low to very low activity during the dry season. The pattern is rather consistent between years but changes with sampling site. It is however different from the results of other studies using pitfall baited traps in Amazonian and Guyanese forests. These studies show much less clear temporal pattern or no seasonal change. There is no obvious pattern of niche sharing by phenological differences between species. The methodological differences of sampling between baited traps and window flight traps are eventually discussed. Due to its passive way of collecting, interception trap is considered as quite relevant for studying flight activity spatio-temporal patterns of Scarabaeinae. This aspect may explain some differences in seasonality patterns compared to other studies.  相似文献   

19.
Aim To design and apply statistical tests for measuring sampling bias in the raw data used to the determine priority areas for conservation, and to discuss their impact on conservation analyses for the region. Location Sub‐Saharan Africa. Methods An extensive data set comprising 78,083 vouchered locality records for 1068 passerine birds in sub‐Saharan Africa has been assembled. Using geographical information systems, we designed and applied two tests to determine if sampling of these taxa was biased. First, we detected possible biases because of accessibility by measuring the proximity of each record to cities, rivers and roads. Second, we quantified the intensity of sampling of each species inside and surrounding proposed conservation priority areas and compared it with sampling intensity in non‐priority areas. We applied statistical tests to determine if the distribution of these sampling records deviated significantly from random distributions. Results The analyses show that the location and intensity of collecting have historically been heavily influenced by accessibility. Sampling localities show dense, significant aggregation around city limits, and along rivers and roads. When examining the collecting sites of each individual species, the pattern of sampling has been significantly concentrated within and immediately surrounding areas now designated as conservation priorities. Main conclusions Assessment of patterns of species richness and endemicity at the scale useful for establishing conservation priorities, below the continental level, undoubtedly reflects biases in taxonomic sampling. This is especially problematic for priorities established using the criterion of complementarity because the estimated spatial costs of this approach are highly sensitive to sampling artefacts. Hence such conservation priorities should be interpreted with caution proportional to the bias found. We argue that conservation priority setting analyses require (1) statistical tests to detect these biases, and (2) data treatment to reflect species distribution rather than patterns of collecting effort.  相似文献   

20.
Aim Various methods are employed to recover patterns of area relationships in extinct and extant clades. The fidelity of these patterns can be adversely affected by sampling error in the form of missing data. Here we use simulation studies to evaluate the sensitivity of an analytical biogeographical method, namely tree reconciliation analysis (TRA), to this form of sampling failure. Location Simulation study. Methods To approximate varying degrees of taxonomic sampling failure within phylogenies varying in size and in redundancy of biogeographical signal, we applied sequential pruning protocols to artificial taxon–area cladograms displaying congruent patterns of area relationships. Initial trials assumed equal probability of sampling failure among all areas. Additional trials assigned weighted probabilities to each of the areas in order to explore the effects of uneven geographical sampling. Pruned taxon–area cladograms were then analysed with TRA to determine if the optimal area cladograms recovered match the original biogeographical signal, or if they represent false, ambiguous or uninformative signals. Results The results indicate a period of consistently accurate recovery of the true biogeographical signal, followed by a nonlinear decrease in signal recovery as more taxa are pruned. At high levels of sampling failure, false biogeographical signals are more likely to be recovered than the true signal. However, randomization testing for statistical significance greatly decreases the chance of accepting false signals. The primary inflection of the signal recovery curve, and its steepness and slope depend upon taxon–area cladogram size and area redundancy, as well as on the evenness of sampling. Uneven sampling across geographical areas is found to have serious deleterious effects on TRA, with the accuracy of recovery of biogeographical signal varying by an order of magnitude or more across different sampling regimes. Main conclusions These simulations reiterate the importance of taxon sampling in biogeographical analysis, and attest to the importance of considering geographical, as well as overall, sampling failure when interpreting the robustness of biogeographical signals. In addition to randomization testing for significance, we suggest the use of randomized sequential taxon deletions and the construction of signal decay curves as a means to assess the robustness of biogeographical signals for empirical data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号