首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxia inducible factor 1 (HIF-1), the key mediator of hypoxia signaling pathways, has been shown involved in hypoxia-induced radioresistance. However, the underlying mechanisms are unclear. The present study demonstrated that both hypoxia and hypoxia mimetic cobalt chloride could increase the radioresistance of human cervical cancer Hela cells. Meanwhile, ectopic expression of HIF-1 could enhance the resistance of Hela cells to radiation, whereas knocking-down of HIF-1 could increase the sensitivity of Hela cells to radiation in the presence of hypoxia. N-Myc downstream-regulated gene 2 (NDRG2), a new HIF-1 target gene identified in our lab, was found to be upregulated by hypoxia and radiation in a HIF-1-dependent manner. Overexpression of NDRG2 resulted in decreased sensitivity of Hela cells to radiation while silencing NDRG2 led to radiosensitization. Moreover, NDRG2 was proved to protect Hela cells from radiation-induced apoptosis and abolish radiation-induced upregulation of Bax. Taken together, these data suggest that both HIF-1 and NDRG2 contribute to hypoxia-induced tumor radioresistance and that NDRG2 acts downstream of HIF-1 to promote radioresistance through suppressing radiation-induced Bax expression. It would be meaningful to further explore the clinical application potential of HIF-1 and NDRG2 blockade as radiosensitizer for tumor therapy.  相似文献   

2.
The NDRG2 gene belongs to a family of N-Myc downstream-regulated genes (NDRGs) and is expressed in many normal tissues. NDRG2 gene expression has been shown to be regulated in the stress response of certain cells. However, its function is not yet fully understood. Many studies have demonstrated that hypoxia, one of the stress responses, induced apoptosis in several cell types. In the current study, we investigated NDRG2 involvement in hypoxia response and found that NDRG2 expression was markedly up-regulated in several tumor cell lines exposed to hypoxic conditions or similar stresses at the mRNA and protein level. We also observed that the expression of NDRG2 was regulated by Hypoxia-inducible factor 1 (HIF-1) in tumor cells under hypoxia. Three hypoxia-responsive elements (HREs) in the NDRG2 promoter were identified. HRE1 could directly bind Hif-1 in vivo. Importantly, we found that silencing or enforcing the expression of NDRG2 could strongly inhibit or increase apoptosis. In addition, our data also showed that Ndrg2 was able to be translocated from the cytoplasm to the nucleus, and the segment from 101 to 178 amino acids of Ndrg2 is responsible for its translocation. Taken together, this study suggests that NDRG2 is a Hif-1 target gene and closely related with hypoxia-induced apoptosis in A549 cells.  相似文献   

3.
N-myc downstream-regulated gene 2 (NDRG2) has been documented to be a pro-differentiative and anti-proliferative gene in cancer research. Our previous study found a significant NDRG2 up-regulation in reactive astrocytes of penumbra after transient focal cerebral ischemia, which was parallel to the enhancement of TUNEL-positive signals. However, it is still uncertain whether NDRG2 participates in cellular apoptosis induced by ischemia-reperfusion injury in brain. In this study, we investigated the role of NDRG2 in cellular apoptosis induced by oxygen-glucose deprivation (OGD) in IL-6-differentiated C6 glioma cells. The results showed that NDRG2 was up-regulated and translocated from the cytoplasm to the nucleus after OGD exposure. NDRG2 over-expression exhibited an anti-proliferative effect and increased the Bax/Bcl-2 ratio after OGD exposure, while NDRG2 silencing promoted the cellular proliferation and attenuated the up-regulation of Bax/Bcl-2 ratio. The pro-apoptotic effect of p53 was verified by the results in which p53 silencing greatly reduced the percentage of OGD-induced apoptotic cells. p53 silencing also reduced the OGD-induced NDRG2 up-regulation. However, over-expression of p53 did not further improve the NDRG2 up-regulation. In conclusion, NDRG2 is a p53-associated regulator of apoptosis in C6-originated astrocytes after OGD exposure. These findings bring insight to the roles of NDRG2 in ischemic-hypoxic injury and provide potential targets for future clinical therapies on stroke.  相似文献   

4.
The placenta is susceptible to diverse insults during human pregnancy. The expression of the protein N-myc down-regulated gene 1 (NDRG1) is regulated during cell proliferation, differentiation, and in response to stress. Nevertheless, the function of this protein in humans remains unknown. We tested the hypothesis that NDRG1 is up-regulated in hypoxic primary human trophoblasts and that NDRG1 modulates trophoblast response to hypoxia. We initially demonstrated that the expression of NDRG1 is enhanced in primary human trophoblasts exposed to hypoxia. Importantly, we found a similar increase in NDRG1 expression in placental samples derived from either singleton gestations complicated by intrauterine growth restriction or from dizygotic twin gestation where one twin exhibited growth restriction. Having established efficient lentivirus-mediated transfection of primary human trophoblasts, we overexpressed NDRG1 in trophoblasts, which resulted in enhanced trophoblast differentiation. In contrast, lentivirus-driven short interfering RNA-mediated silencing of NDRG1 diminished trophoblast viability and differentiation. Consistent with these results, NDRG1 reduced the expression level of p53 in trophoblasts cultured in standard or hypoxic conditions. Furthermore, NDRG1 expression was regulated by the activity of SIRT1 (Sir2-like protein 1), which promotes cell survival. Together, our data indicate that NDRG1 interacts with SIRT1/p53 signaling to attenuate hypoxic injury in human trophoblasts.  相似文献   

5.
Liu X  Niu T  Liu X  Hou W  Zhang J  Yao L 《Gene》2012,503(1):48-55
Previous studies have demonstrated that N-Myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor that is downregulated in many human cancers and when overexpressed, can inhibit tumor growth and metastasis. However, its molecular function, its modulatory targets, and signaling pathways associated with it remain unclear. Here, in an effort to identify the genes modulated by NDRG2 expression, a microarray study was conducted to detect the expression profile of HepG2 cells overexpressing NDRG2 or LacZ. Gene Ontology (GO) biological process analysis revealed that genes related to G protein signaling pathway were upregulated. Five of them were selected and verified by real-time PCR. Gene sets related to M phase of cell cycle were downregulated. This was in agreement with cell cycle analysis. Signaling pathway analysis demonstrated apparent augmented hematopoietic cell lineage pathway and cell adhesion, but reduced glycosylphosphatidylinositol (GPI)-anchor biosynthesis, protein degradation and SNARE interactions. Furthermore, through motif analysis and experimental validation, we found that the p38 phosphorylation can be increased by NDRG2. Our research provides the molecular basis for understanding the role of NDRG2 in tumor cells and raises interesting questions about its mechanisms and potential use in cancer therapy.  相似文献   

6.
7.
Recent evidence has highlighted that long noncoding RNAs (lncRNA) are associated with many diseases, particularly cancer. However, current understanding of the lncRNA deleted in lymphocytic leukemia 1 (DLEU1) in pancreatic ductal adenocarcinoma (PDAC) remains limited. Our studies indicated that the DLEU1 expression level was upregulated in PDAC tissue samples compared with adjacent normal tissue. Moreover, the aberrant overexpression of DLEU1 indicated poor prognosis of patients with PDAC. Loss-of-function experiments revealed that DLEU1 knockdown inhibited the proliferation, migration, and invasion of PDAC cells in vitro and decreased tumor growth in vivo. Bioinformatics analysis predicted that miR-381 potentially targeted the DLEU1 3′-untranslated region (UTR), suggesting an interaction between miR-381 and DLEU1. Furthermore, miR-381 also targeted the chemokine receptor-4 (CXCR4) messenger RNA 3′-UTR, which was validated by luciferase reporter assay. Taken together, our study demonstrated the oncogenic role of DLEU1 in clinical PDAC specimens and cellular experiments, showing the potential involvement of DLEU1/miR-381/CXCR4 pathway. These results provide novel insight into PDAC tumorigenesis.  相似文献   

8.
9.
Hypoxia‐inducible factor‐2α (HIF‐2α) plays an important role in increasing cancer progression and distant metastasis in a variety of tumour types. We aimed to investigate its biological function and clinical significance in human pancreatic ductal adenocarcinoma (PDAC). A total of 283 paired PDAC tissues and adjacent normal tissues were collected from patients who underwent surgery or biopsy at Sun Yat‐sen Memorial Hospital between February 2004 and October 2016. In this study, we noted that HIF‐2α expression was significantly up‐regulated in PDAC, positively associated with disease stage, lymph‐node metastasis and patient survival, and identified as an independent prognostic factor of PDAC patients. We demonstrated that HIF‐2α silencing could reduce proliferation, migration and invasion of PDAC cells in vitro. The similar effect on growth was demonstrated in vivo. Furthermore, we noted that knock‐down of HIF‐2α significantly decreased the expression of glutamate oxaloacetate transaminase 1 (GOT1). Importantly, we confirmed that the PI3K/mTORC2 pathway promoted GOT1 expression by targeting HIF‐2α. Our study validated HIF‐2α was an important factor in PDAC progression and poor prognosis and may promote non‐canonical glutamine metabolism via activation of PI3K/mTORC2 pathway. Targeting HIF‐2α represents a novel prognostic biomarker and therapeutic target for patients with PDAC.  相似文献   

10.
In the current study, we examined the function of N-myc downstream-regulated gene 2 (NDRG2) expression in breast cancer cells, especially focusing on the role of bone morphogenetic protein-4 (BMP-4) induced by NDRG2. NDRG2 expression in MDA-MB-231 cells inhibited the mRNA expression of several matrix metalloproteinases (MMPs) and the gelatinolytic activity of MMP-9. Interestingly, a specific induction of active BMP-4 was exclusively observed in MDA-MB-231-NDRG2 cells but not in MDA-MB-231-mock cells. Neutralization of BMP-4 in MDA-MB-231-NDRG2 cells resulted in the rescue of MMP-9 mRNA expression and migration capacity. In addition, treatment with recombinant BMP-4 dramatically suppressed MMP-9 mRNA expression, gelatinolytic MMP-9 activity, migration, and invasion capacity both in MDA-MB-231 and PMA-treated MCF-7 cells. Collectively, our data show that BMP-4 induced by NDRG2 expression inhibits the metastatic potential of breast cancer cells, especially via suppression of MMP-9 activity.  相似文献   

11.
ADAM8 belongs to a family of transmembrane proteins implicated in cell-cell interactions, proteolysis of membrane proteins, and various aspects of carcinogenesis. In the present study, we aimed to evaluate the expression and function of ADAM8 in pancreatic cancer. ADAM8 mRNA levels were analysed by quantitative RT-PCR and correlated to patient survival. Immunohistochemistry was performed to localize ADAM8 in pancreatic tis-sues. Silencing of ADAM8 expression was carried out by transfection with specific siRNA oligonucleotides. Cell growth and invasion assays were used to assess the functional consequences of ADAM8 silencing. SELDI-TOF-MS was performed to detect the proteolytic activity of ADAM8 in pancreatic cancer cells. ADAM8 mRNA was significantly overexpressed in pancreatic ductal adenocarcinoma (PDAC) compared with normal pancreatic tissues (5.3-fold increase; P= 0.0008), and high ADAM8 mRNA and protein expression levels correlated with reduced survival time of PDAC patients (P= 0.048 and P= 0.065, respectively). Silencing of ADAM8 expression did not significantly influence pancreatic cancer cell growth but suppressed invasiveness. In addition, decreased proteolytic activity was measured in cell culture supernatants following silencing of ADAM8. In conclusion, ADAM8 is overexpressed in PDAC, influences cancer cell invasiveness and correlates with reduced survival, suggesting that ADAM8 might be a potential target in pancreatic cancer therapy.  相似文献   

12.
13.
The aim of this study was to identify proteins with aberrant expression in clear cell renal cell carcinoma (ccRCC), and elucidate their clinical utilities. The protein expression profiles of primary ccRCC tumor tissues and neighboring non-tumor tissues were obtained from 9 patients by two-dimensional difference gel electrophoresis and mass spectrometry. Comparative analysis of 3771 protein spots led to the identification of 73 proteins that were expressed at aberrant levels in tumor tissues compared with non-tumor tissues. Among these 73 proteins, we further focused on N-myc downstream-regulated gene 1 protein (NDRG1). NDRG1 expression is regulated by members of myc family as well as by p53, HIF1A, and SGK1. The biological and clinical significance of NDRG1 is controversial for various malignancies and no detailed studies on NDRG1 have been reported in ccRCC until our study. For the 82 newly enrolled ccRCC patients, immunohistochemical analysis revealed a significant association between nuclear NDRG1 and favorable prognosis (p < 0.05). Multivariate analysis demonstrated the role of NDRG1 as an independent factor of progression-free survival (p = 0.01). Subsequent in vitro gene suppression assay demonstrated that NDRG1 silencing significantly enhanced cell proliferation and invasion of RCC cells. The cytotoxic effects of NDRG1 up-regulation induced by an iron chelator were also confirmed. These findings suggest that nuclear NDRG1 has tumor suppressive effects, and the NDRG1 expression may have clinical values in ccRCC. Nuclear NDRG1 may provide additional insights on molecular backgrounds of ccRCC progression, and contribute to the development of novel therapeutic strategy.  相似文献   

14.
Diffuse panbronchiolitis critical region 1 (DPCR1) is located in the major histocompatibility complex (MHC) class I. It was reported to be downregulated in invasive pituitary adenoma compared with that in non-invasive tumors, but upregulated in the precursor of gastric carcinogenesis. However, the direct effect of DPCR1 on cancer cells has rarely been reported, and the role DPCR1 in pancreatic ductal adenocarcinoma (PDAC) remains unclear. The clinical sample validation and public data analysis of the present study demonstrated that DPCR1 was upregulated markedly in PDAC and this high expression was negatively correlated with the patient prognosis. Functionally, knocking down DPCR1 in PDAC cell lines inhibited cell proliferation, migration and invasion in vitro. Tumor xenograft experiments further showed that suppression of DPCR1 inhibited tumor growth in vivo. In addition, the results of RNA deep sequencing and qRT-PCR assay showed that DPCR1 participated in PADC progression by regulating nuclear factor-kappa B signaling pathway, suggesting that it might be a novel oncogene in tumor progression and a potential therapeutic target in PDAC as well.  相似文献   

15.
Nearly all clinical trials that have attempted to develop effective strategies against ischemic stroke have failed, excluding those for thrombolysis, and most of these trials focused only on preventing neuronal loss. However, astrocytes have gradually become a target for neuroprotection in stroke. In previous studies, we showed that the newly identified molecular N-myc downstream-regulated gene 2 (Ndrg2) is specifically expressed in astrocytes in the brain and involved in some neurodegenerative diseases. However, the role of NDRG2 in ischemic stroke remained unclear. In this study, we investigated the role of NDRG2 in middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia and in oxygen–glucose deprivation (OGD)-induced cellular apoptosis in the M1800 astrocyte cell line. NDRG2 mRNA and protein expression began to increase at 6 and 2 h after reperfusion and peaked at 24 h in the ischemic penumbra and in M1800 cells, as detected by RT-PCR and Western blotting. Double immunofluorescence staining showed that the number of apoptotic cells increased as the NDRG2-positive signal increased and that the NDRG2 signal was sometimes co-localized with TUNEL-positive cells and translocated from the cytoplasm to the nucleus in both the ischemic penumbra and the M1800 cells. Using a lentivirus, we successfully constructed two stable astrocytic cell lines in which NDRG2 expression was significantly up- or down-regulated. NDRG2 silencing had a proliferative effect and reduced the percentage of apoptotic cells, reactive oxygen species (ROS) production, and cleaved Caspase-3 protein expression following OGD, whereas NDRG2 over-expression had the opposite effects. In conclusion, NDRG2 is involved in astrocyte apoptosis following ischemic–hypoxic injury, and inhibiting NDRG2 expression significantly reduces ROS production and astrocyte apoptosis. These findings provide insight into the role of NDRG2 in ischemic–hypoxic injury and provide potential targets for future clinical therapies for stroke.  相似文献   

16.
MicroRNAs, non-coding 20–22 nucleotide single-stranded RNAs, result in translational repression or degradation and gene silencing of their target genes, and significantly contribute to the regulation of gene expression. In the current study, we report that miR-182 expression was significantly upregulated in prostate cancer tissues and four cell lines, compared to benign prostatic hyperplasia tissues and normal prostatic epithelial (RWPE-1) cells. Ectopic overexpression of miR-182 significantly promotes the proliferation, increases the invasion, promotes the G1/S cell cycle transition and reduces early apotosis of PC-3 cells, while suppression of miR-182 decreased the proliferation and invasion, inhibits the G1/S cell cycle transition and increase early apotosis of PC-3 cells. Additionally, we demonstrated that miR-182 could downregulate expression of NDRG1 by directly targeting the NDRG1 3′-untranslated region. In conclusion, our results suggest that miR-182 plays an important role in the proliferation of human prostate cancer cells by directly suppressing the tumor supressor gene NDRG1. We uncovered a new epigenetic regulation of NDRG1.  相似文献   

17.
The N-myc downstream-regulated gene (NDRG) family consists of four proteins: NDRG1, NDRG2, NDRG3, and NDRG4 in mammals. NDRG1 has been thoroughly studied as an intracellular protein associated with stress response, cell growth, and differentiation. A nonsense mutation in the NDRG1 gene causes hereditary motor and sensory neuropathy, Charcot-Marie-Tooth disease type 4D. We previously generated Ndrg1-deficient mice and found that they exhibited peripheral nerve degeneration caused by severe demyelination, but that the complicated motor abilities were retained. These results implied that other NDRG family proteins may compensate for the NDRG1 deficiency in the central nervous system. In this study we raised specific antibodies against each member of the NDRG protein family and examined their cellular expression patterns in the mouse brain. In the cerebrum, NDRG1 and NDRG2 were localized in oligodendrocytes and astrocytes, respectively, whereas NDRG3 and NDRG4 were ubiquitous. In the cerebellum, NDRG1 and NDRG4 were localized in Purkinje cells and NDRG2 in Bergmann glial cells. NDRG3 was detected in the nuclei in most cells. These expression patterns demonstrated the cell type-specific and ubiquitous localization of the NDRG family proteins. Each NDRG may play a partially redundant role in specific cells in the brain.  相似文献   

18.
19.
目的:阐明NDRG2(N-Myc downstream-regulated gene 2)在肝癌细胞中对CD24 的调控及其对乳腺癌细胞侵袭能力的影响。 方法:Western blot 检测低转移性的肝癌细胞Huh7、高转移性的肝癌细胞系MHCC97h 及正常人肝细胞系L-02 中NDRG2 和 CD24 的表达;通过腺病毒载体上调MHCC97h 细胞中NDRG2 的水平,或利用siRNA 下调Huh7 细胞中NDRG2 的表达,检测 CD24 的变化以及细胞侵袭能力的改变。结果:MHCC97h 细胞中NDRG2 基因和蛋白的表达水平低于Huh7 细胞,而CD24 的表达 水平高于Huh7 细胞;在MHCC97h 细胞中上调NDRG2 可以抑制CD24 的表达并抑制其侵袭能力,而在Huh7 细胞中下调 NDRG2 的表达可以提高CD24 的水平及细胞的侵袭能力。结论:NDRG2 可能通过影响CD24 参与调控肝癌细胞的侵袭能力。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号