首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Echolocation constraints of Daubenton's Bat foraging over water   总被引:2,自引:0,他引:2  
1. Daubenton's Bats ( Myotis daubentonii ) foraging over a stream concentrated their activity over calm surfaces, avoiding an adjacent area with small ripples (< 3 cm high). Aerial insects were most abundant over the ripples, so insect distribution could not explain why the bats avoided this area.
2. The bats flew low over water and always ( N = 22) directed the head forwards, presumably emitting the echolocation beam parallel to the surface, thus minimizing clutter. At an angle of incidence of 30° there was significantly more clutter from the rippled water.
3. The ripples produced ultrasonic noises in the form of transient pulses at an average rate of 6·2 per second. In the present case, such pulses were common enough potentially to interfere with target detection by the bats. Transient noises and echo clutter from moving ripples may be the principal reason why bats generally avoid foraging low over turbulent water.
4. The target strength of a potential insect prey at the water surface and the source levels of the bats' searching signals were measured to use in estimating the echo level at the bat when it detects the prey. The echo level at detection (+ 38 dB sound pressure level) was about the same as the clutter level extrapolated to the detection distance. This suggests that Daubenton's Bat operates at very low signal-to-noise ratios when foraging for insects near the water surface.  相似文献   

2.
Many temperate insectivorous bats show marked sexual segregation during the summer, but in spectacular, pre-hibernation swarming, gather at caves to mate. In many species, sexual segregation is probably due to a gradient in aerial insect availability that confines females to lower elevations, where high reproductive costs are met by an abundant and reliable food supply. In the hawking and trawling Myotis daubentonii, we show that alongside inter-sexual segregation, there is intra-male segregation and suggest that this results from the exclusion of most males from high-quality habitat. These apparently excluded males suffer reduced foraging efficiency and mating success relative to males that roost with the females in summer. Changes in resources and behaviour at the end of the summer lead to a change in strategy that gives all males a chance to mate during swarming, but this does not overcome the paternity advantage to males that spend the summer with the females.  相似文献   

3.
The diets of British bats (Chiroptera)   总被引:4,自引:0,他引:4  
Sixty-one studies of the diets of 15 species of bats found in the British Isles are reviewed. Fourteen studies describe the diets of more than one species. Barbastella barbastellus and Plecotus spp. eat mainly Lepidoptera. Eptesicus serotinus takes mainly Coleoptera, but feeds on a wide range of prey, found in several habitats. Rhinolophus ferrumequinum hunts mainly Coleoptera and Lepidoptera by hawking, gleaning and perch hunting. Myotis bechsteinii takes mostly woodland families of Diptera and Lepidoptera. The remaining nine species eat mainly Diptera. Myotis nattereri feeds almost entirely on diurnal Diptera, gleaned from their nightly resting places. Rhinolophus hipposideros and Myotis mystacinus take mostly swarming crepuscular Diptera by hawking, probably near water and in damp wooded areas; both also glean. Myotis brandtii feeds on Diptera by hawking and gleaning; Nyctalus noctula by hawking. Myotis daubentonii, Pipistrellus spp. and Nyctalus leisleri eat many aquatic Diptera, and may therefore be expected to feed close to freshwater habitats. M. daubentonii hunts by trawling aquatic Diptera from the surface of water.  相似文献   

4.
The bat Myotis adversus hunts for prey by aerial hawking and by taking prey from the water surface with its feet (trawling). The flight performance and echolocation of this species were studied in Queensland, Australia, and comparisons were made with Myotis daubentoni , a bat filling a similar ecological niche in the Palaearctic Region. The bats foraged in very similar ways, using the same foraging tactics and feeding in similar habitats, yet they were not geometrically similar in shape. The slightly larger Myotis adversus had relatively larger wings than M. daubentoni , conferring a slightly lower wing-loading. Nevertheless, M. adversus flew faster than M. daubentoni during the searching phase of foraging. Myotis daubentoni turned in tighter circles than M. adversus . Both species used short frequency-modulated (FM) echolocation calls of a characteristic sigmoidal structure, and nulls typically observed in the calls were an observational artefact. Myotis adversus also adopted an unusual 'long'FM call while foraging. The relations between echolocation frequencies and body size were explored in male M. adversus . Specialized morphological and acoustic adaptations for prey capture by trawling in insectivorous bats are discussed.  相似文献   

5.
Interspecific differences in traits can alter the relative niche use of species within the same environment. Bats provide an excellent model to study niche use because they use a wide variety of behavioral, acoustic, and morphological traits that may lead to multi‐species, functional groups. Predatory bats have been classified by their foraging location (edge, clutter, open space), ability to use aerial hawking or substrate gleaning and echolocation call design and flexibility, all of which may dictate their prey use. For example, high frequency, broadband calls do not travel far but offer high object resolution while high intensity, low frequency calls travel further but provide lower resolution. Because these behaviors can be flexible, four behavioral categories have been proposed: (a) gleaning, (b) behaviorally flexible (gleaning and hawking), (c) clutter‐tolerant hawking, and (d) open space hawking. Many recent studies of diet in bats use molecular tools to identify prey but mainly focus on one or two species in isolation; few studies provide evidence for substantial differences in prey use despite the many behavioral, acoustic, and morphological differences. Here, we analyze the diet of 17 sympatric species in the Chihuahuan desert and test the hypothesis that peak echolocation frequency and behavioral categories are linked to differences in diet. We find no significant correlation between dietary richness and echolocation peak frequency though it spanned close to 100 kHz across species. Our data, however, suggest that bats which use both gleaning and hawking strategies have the broadest diets and are most differentiated from clutter‐tolerant aerial hawking species.  相似文献   

6.
Recently, several species of aerial‐hawking bats have been found to prey on migrating songbirds, but details on this behaviour and its relevance for bird migration are still unclear. We sequenced avian DNA in feather‐containing scats of the bird‐feeding bat Nyctalus lasiopterus from Spain collected during bird migration seasons. We found very high prey diversity, with 31 bird species from eight families of Passeriformes, almost all of which were nocturnally flying sub‐Saharan migrants. Moreover, species using tree hollows or nest boxes in the study area during migration periods were not present in the bats’ diet, indicating that birds are solely captured on the wing during night‐time passage. Additional to a generalist feeding strategy, we found that bats selected medium‐sized bird species, thereby assumingly optimizing their energetic cost‐benefit balance and injury risk. Surprisingly, bats preyed upon birds half their own body mass. This shows that the 5% prey to predator body mass ratio traditionally assumed for aerial hunting bats does not apply to this hunting strategy or even underestimates these animals’ behavioural and mechanical abilities. Considering the bats’ generalist feeding strategy and their large prey size range, we suggest that nocturnal bat predation may have influenced the evolution of bird migration strategies and behaviour.  相似文献   

7.
水鼠耳蝠 Myotis daubentonii(Chiroptera,Vespertilionidae),广泛分布于欧洲和亚洲,亚种分化众多,在亚洲已报道有 M.d.ussuriensis,M.d.loukashkini,M.d.petax和M.d.laniger但其分类地位一直受到国内外学者的关注.中国的水鼠耳蝠长期以来被认为属于水鼠耳蝠M daubentonii亚种.最近有研究认为中国的水鼠耳蝠与欧洲的水鼠耳蝠M.daubentonii不同,并把"petax"提升为种.在中国境内相继采到17只鼠耳蝠标本,根据外形、头骨、牙齿、阴茎骨、线粒体DNA细胞色素b等特征,鉴定为东亚水鼠耳蝠Myotis petax,对中国水鼠耳蝠的种和亚种分类做一讨论.  相似文献   

8.
Gareth  Jones 《Journal of Zoology》1995,237(2):303-312
The noctule Nyctulus noctula (Schreber, 1774) is a relatively large (c. 25 g) insectivorous bat which catches insects on the wing (by aerial hawking). Emergence at a maternity roost was earliest relative to sunset when females were lactating, and bats may then have risked predation by flying at higher light levels during a period of high energy demand. Flight performance was quantified by using stereophotogrammetry. At feeding sites bats flew at 6.0 ± 2.1 m/s. This was faster than predicted minimum power speed (V mp), and either between V mp and maximum range speed (V mr), or close to their predicted V mr, depending on which aerodynamic model of flight power requirements was used. The echolocation behaviour of noctules is flexible. Long duration, low frequency calls (c. 20 kHz) with little frequency modulation were emitted while cruising, but at foraging sites the calls became more frequency-modulated. As the noctule is traditionally thought of as using low frequency echolocation, it was expected to receive weak echoes from small targets and therefore to specialize in eating large insect prey. Although the bats ate mainly beetles, large numbers of small dipterans were also eaten. The noctule is probably able to detect such small items because, when foraging, its calls become broadband and sweep from high frequencies. Higher harmonics are also present, and these may assist in the detection of small prey. In noctules, as in many bats, there appears to be a 1:1 link between wingbeat and call production during the search phase of foraging.  相似文献   

9.
Summary The insectivorous bat Myotis lucifugus typically apportions the night into two foraging periods separated by an interval of night roosting. During this interval, many bats occupy roosts that are used exclusively at night and are spatially separate from maternity roosts. The proportion of the night which bats spend roosting, and thus the proportion spent foraging, vary both daily and seasonally in relation to the reproductive condition of the bats, prey density, and ambient temperature. A single, continuous night roosting period is observed during pregnancy. During lactation, females return to maternity roosts between foraging bouts, and night roosts are used only briefly and sporadically. Maximum use of night roosts occurs in late summer after young become volant. Superimposed upon these seasonal trends is day-to-day variation in the bats' nightly time budget. Long night roosting periods and short foraging periods are associated with cool nights and low prey density. This behavioral response may minimize energetic losses during periods of food scarcity.  相似文献   

10.
Hagen EM  Sabo JL 《Oecologia》2011,166(3):751-760
River and riparian areas provide an important foraging habitat for insectivorous bats owing to high insect availability along waterways. However, structural characteristics of the riverine landscape may also influence the location of foraging bats. We used bat detectors to compare bat activity longitudinally along river reaches with contrasting channel confinement, ratio of valley floor width to active channel width, and riparian vegetation, and laterally with distance from the river along three different reach types. We measured rates of insect emergence from the river and aerial insect availability above the river and laterally up to 50-m into the riparian habitat in order to assess the relationship between food resources and insectivorous bat activity. Longitudinally, bat activity was concentrated along confined reaches in comparison to unconfined reaches but was not related to insect availability. Laterally, bats tracked exponential declines in aquatic insects with distance from the river. These data suggest that along the lateral dimension bats track food resources, but that along the longitudinal dimension channel shape and landscape structure determine bat distributions more than food resources.  相似文献   

11.
The reach of artificial light at night (ALAN) is growing rapidly around the globe, including the increasing use of energy‐efficient LED lights. Many studies document the physiological costs of light at night, but far fewer have focused on the potential benefits for nocturnal insectivores and the likely ecological consequences of shifts in predator–prey relationships. We investigated the effects of ALAN on the foraging behaviour and prey capture success in juvenile Australian garden orb‐web spiders (Eriophora biapicata). Laboratory experiments demonstrated that juvenile spiders were attracted to LED lights when choosing foraging sites, but prey availability was a stronger cue for remaining in a foraging site. Field experiments revealed a significant increase in prey capture rates for webs placed near LED lights. This suggests that any physiological costs of light at night may be offset by the foraging benefits, perhaps partially explaining recently observed increases in the size, fecundity and abundance of some orb‐web spider species in urban environments. Our results highlight the potential long‐term consequences of night lighting in urban ecosystems, through the impact of orb‐web spiders on insect populations.  相似文献   

12.
In anthropogenic landscapes, aerial insectivores are often confronted with variable habitat complexity, which may influence the distribution of prey. Yet, high mobility may allow aerial insectivores to adjust their foraging strategy to different prey distributions. We investigated whether aerial-hunting common noctules Nyctalus noctula adjust their foraging strategy to landscapes with different habitat complexity and assumingly different prey distribution. We hypothesized that the movement behaviour of hunting common noctules and changes of movement behaviour in reaction towards conspecifics would depend on whether they hunt in a structurally poor cropland dominated landscape or a structurally rich forest dominated landscape. We tracked flight paths of common noctules in northeastern Germany using GPS loggers equipped with an ultrasonic microphone that recorded foraging events and presence of conspecifics. Above cropland, common noctules hunted mainly during bouts of highly tortuous and area restricted movements (ARM). Bats switched from straight flight to ARM after encountering conspecifics. In the forested landscape, common noctules hunted both during ARM and during straight flights. The onset of ARM did not correlate with the presence of conspecifics. Common noctules showed a lower feeding rate and encountered more conspecifics above the forested than above the cropland dominated landscape. We conjecture that prey distribution above cropland was patchy and unpredictable, thus making eavesdropping on hunting conspecifics crucial for bats during search for prey patches. In contrast, small scale structural diversity of the forested landscape possibly led to a more homogeneous prey distribution at the landscape scale, thus enabling bats to find sufficient food independent of conspecific presence. This suggests that predators depending on ephemeral prey can increase their foraging success in structurally poor landscapes by using social information provided by conspecifics. Hence, a minimum population density might be obligatory to enable successful foraging in simplified landscapes.  相似文献   

13.
Although tree cavities are a particularly critical resource for forest bats, how bats search for and find new roosts is still poorly known. Building on a recent study on the sensory basis of roost finding in the noctule (Ruczynski et al. 2007), here we take a comparative approach to how bats find roosts. We tested the hypothesis that species' flight abilities and echolocation call characteristics play important roles in how well and by which cues bats find new tree roosts. We used the very manoeuvrable, faintly echolocating brown long-eared bat ( Plecotus auritus ) and the less manoeuvrable, louder Daubenton's bat ( Myotis daubentonii ) as study species. The species are sympatric in European temperate forests and both roost in tree cavities. We trained bats in short-term captivity to find entrances to tree cavities and experimentally manipulated the sensory cues available to them. In both species, cue type influenced the search time for successful cavity detection. Visual, olfactory and temperature cues did not improve the bats' performance over the performance by echolocation alone. Eavesdropping on conspecific echolocation calls played back from inside the cavity decreased search time in Daubenton's bat ( M. daubentonii ), underlining the double function of echolocation signals – orientation and communication. This was not so in the brown long-eared bat ( P. auritus ) that has low call amplitudes. The highly manoeuvrable P. auritus found cavities typically from flight and the less manoeuvrable M. daubentonii found more entrances during crawling. Comparison with the noctule data from Ruczyński et al. (2007) indicates that manoeuvrability predicts the mode of cavity search. It further highlights the importance of call amplitude for eavesdropping and cavity detection in bats.  相似文献   

14.
Sewage treatment works (STWs) with percolating filter beds are known to provide profitable foraging areas for insectivorous birds because of their association with high macroinvertebrate densities. Fly larvae developing on filter beds at STWs may similarly provide a valuable resource for foraging bats. Over the last two decades, however, there has been a decline in filter beds towards a system of 'activated sludge'. Insects and bat activity were surveyed at 30 sites in Scotland using these two different types of sewage treatment in order to assess the possible implications of these changes for foraging bats. Bat activity (number of passes) recorded from broad-band bat detectors was quantified at three points within each site. The biomass of aerial insects, sampled over the same period as the detector surveys, was measured using a suction trap. The biomass of insects and activity of Pipistrellus spp. were significantly higher at filter beds than at activated sludge sites. In addition, although foraging activity of Pipistrellus spp. at filter beds was comparable to that of adjacent 'good' foraging habitat, foraging at activated sludge sites was considerably lower. This study indicates the high potential value of an anthropogenic process to foraging bats, particularly in a landscape where their insect prey has undergone a marked decline, and suggests that the current preference for activated sludge systems is likely to reduce the value of treatment works as foraging sites for bats.  相似文献   

15.
Myotis capaccinii is one of the most endangered Mediterranean bats. We radio tracked 21 adult individuals to assess foraging range and analyse micro-habitat selection around a nursery roost in central Italy. Habitats were characterized by development of riparian vegetation, distance between banks, degree of water clutter and levels of water pollution (expressed by macro-benthic bioindicators). Diet was also analysed to see whether prey rarity might account for species decline. Myotis capaccinii proved highly mobile: the maximum straight line distance between roost location and the farthest foraging fix recorded on one night was c . 21 km, whereas this variable averaged 7.5 km for the entire study. In general, the species preferred calm waters bordered by well-developed riparian vegetation and large (>5 m) inter-bank distances. Such factors determined the overall quality of foraging sites. Although diet was dominated by pollution-tolerant insects such as Chironomus midges, bats preferred less polluted waters. Our study also confirmed the occurrence of piscivory in this bat. Of the factors potentially responsible for species endangerment, the most likely are general habitat degradation, that is alteration of riparian vegetation and pollution, and cave roost loss. Given the large ecological niche overlap, increasing Myotis daubentonii may be outcompeting M. capaccinii . The most urgent actions to preserve M. capaccinii are extensive restoration of riparian vegetation and strict roost protection. Our study offers indications about where, and how, restoration of riparian vegetation may translate into best conservation results.  相似文献   

16.
The acoustic structure of echolocation pulses emitted by Japanese pipistrellePipistrellus abramus (Temminck, 1840) bats during different phases of aerial hawking is described here for the first time. Behavioural observations of the foraging flight in conjunction with acoustical analysis of echolocation pulses indicated a flight path consisting of four distinct phases following the reconnaissance or search phase. Short (∼4.68 ms) and relatively broadband frequencymodulated (FM) pulses (∼23.55 kHz bandwidth) were emitted at a repetition rate of 15 Hz during presumed target approach. Presumed insect capture consisted of an early and a late buzz phase. Both buzz types were emitted at high repetition rates (111 Hz in early to 222 Hz in late) and consisted of very short, broadband FM pulses (1.26 ms in early to 0.3 ms in late). There was also a characteristically sharp drop in both the peak and terminal frequencies of each echolocation pulse during the transition from early to late buzz. No pulses were recorded during the final phase of foraging referred to as a “post-buzz pause”. Thus the foraging behaviour of this species consisted of five sequential phases involving four broad types of echolocation pulses.  相似文献   

17.
Aspects of searching behaviour among free-living South American flycatchers (Aves: Tyrannidae) are compared quantitatively. Flycatchers forage with stationary searching periods, followed either by an attempted prey capture (sally) or a ‘give-up’ flight to a new perch. Search times are proportional to body size within each of three categories of foraging behaviour: aerial hawking, sally-gleaning, and perch-gleaning. Over the family as a whole, search times are directly proportional to the size of the visual field scanned during the search. Intraspecific variations in search times are caused by local variations in prey density or visual complexity of the habitat. Between foraging modes, differences in searching and movement patterns are related to prey dispersion characteristics. Aerial hawkers regularly return to favoured perches, but foliage gleaners, which reduce the resources surrounding a perch by sallying only once, rarely return to a perch. In contrast to aerial hawkers, foliage gleaners appear to follow an organized scanning procedure on each perch, by searching nearby surfaces before they examine more distant prey substrates. Throughout the family, the median flight distance after a perch is abandoned is approximately twice the median search radius. Comparisons of search time distributions preceding sallies with those preceding give-up flights suggest that there is no single, optimal give-up time in a given habitat. Foliage-gleaning species appear to assess the amount of search time each perch warrants, presumably based on the degree of complexity of the search area. They either sally at prey before that time, or give-up when the allotted time has elapsed.  相似文献   

18.
Distribution and minimum population densities for seven UK bat species known to be resident in northern England were calculated in an area covering 2500 km2. The species present were pipistrelle ( Pipistrellus pipistrellus ), brown long-eared ( Plecotus auritus ), Daubenton's ( Myotis daubentonii ), whiskered ( Myotis mystacinus ), Natterer's (Myotis nattereri) , noctule ( Nyctalus noctula ) and Brandt's (Myotis brandtii). Data were collected primarily from counts at summer roosts over the period 1983 to 1990. A total of 310 bat roosts were discovered within the study area. Of the 256 roosts at which the species present was identified, the majority, 127 (49.6%) were P. pipistrellus , with a mean maternity roost size of 69.6 bats. A minimum population density of 12.6 batskm−2 was estimated for P. pipistrellus , based on summer (maternity) roosts. The minimum population density estimate was higher than previous studies in northern England but substantially lower than those reported in Scotland (18.2 bats km-−2). The combined density of M. mystacinus, M. brandtii, and P. pipistrellus , which have similar foraging styles (15.8 bats km−2), is comparable to Scottish P. pipistrellus densities. The density of M. duubentonii was also lower than in Scotland, although the density of P. auritus was comparable. The majority of summer roosts for all species were found in buildings, except N. noctula and M. duubentonii which used bridges/tunnels or trees.  相似文献   

19.
Radio-tracking was useed to dertermine the foraging behaviour and habitat use of the serotine bat, Eptesicus serotinus , at two roosts in southren England. The basts communted an average of 6.5 km to and from distinct foraging sites and used up ot five sites per night. Serotine foraged in a wide range of habitats and were able to locate and exploit temporary feeding site such as recently mown grass. They foraged regulary arround white streelamps and in alte summer over cattle pasture on which fresh dung was present. Reproductively active females were strongly philopatric to their day-roost. In contrast, reproductively inactive females, from the same roosts. moved to new day-roosts up to 10 km from the site of capture. Serotines used thre distinct foraging strategies, short filight, ground feeding, and, predominantly, aerial hawking. Foraging bouts were interpresed with resting phases, with individuals roosting alone on walls of houses or in trees close to foraging sites. It is concluded that serotines are well adapted to an anthropogenic envioronment. They are strongly philopartric to roosts in human habitations, in close proximity to a range of feeding sites wehre they can take advantage of favourarble land amangement practices.  相似文献   

20.
Distributions of Daubenton's bat (Myotis daubentonii), common pipistrelle, (Pipistrellus pipistrellus), and soprano pipistrelle (Pipistrellus pygmaeus) were investigated along and altitudinal gradient of the Lledr River, Conwy, North Wales, and presence assessed in relation to the water surface condition, presence/absence of bank‐side trees, and elevation. Ultrasound recordings of bats made on timed transects in summer 1999 were used to quantify habitat usage. All species significantly preferred smooth water sections of the river with trees on either one or both banks; P. pygmaeus also preferred smooth water with no trees. Bats avoided rough and cluttered water areas, as rapids may generate high‐frequency echolocation‐interfering noise and cluttered areas present obstacles to flight. In lower river regions, detections of bats reflected the proportion of suitable habitat available. At higher elevations, sufficient habitat was available; however, bats were likely restricted due to other factors such as a less predictable food source. This study emphasizes the importance of riparian habitat, bank‐side trees, and smooth water as foraging habitat for bats in marginal upland areas until a certain elevation, beyond which bats in these areas likely cease to forage. These small‐scale altitudinal differences in habitat selection should be factored in when designing future bat distribution studies and taken into consideration by conservation planners when reviewing habitat requirements of these species in Welsh river valleys, and elsewhere within the United Kingdom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号