首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Foraging in Daubenton's bats Myotis daubentonii , at two altitudinal locations along a river gradient in North Wales was investigated in relation to aerial insect density and to the density of prey on the water surface. Prey capture in Daubenton's bats consisted of aerial hawking, where prey was taken in the air, and trawling, where bats gaffed invertebrates from the water surface. Aerial hawking accounted for 86% of all prey capture attempts, despite aerial insect availability falling close to zero for much of the night. Conversely, prey density on the water surface was an order of magnitude higher than aerial prey density and increased through the night due to aquatic invertebrate drift. At the higher altitude site, M. daubentonii switched prey capture strategy to gaffing, possibly to reflect this change in prey availability on the water's surface, but at the lower altitude site, they maintained aerial hawking as the preferred strategy. The switch to gaffing may be inhibited by the significant downstream accumulation of large numbers of inedible exuviae of caddis flies, Trichoptera, at the low-altitude site, which form both acoustic clutter and increase the probability of capturing inedible prey, making foraging less efficient. These small altitudinal differences in foraging strategy should be factored into the design of future altitudinal bat foraging studies and if found to be a widespread strategy, taken into consideration by conservation planners when reviewing the habitat requirements of Daubenton's bats in river valleys within the United Kingdom.  相似文献   

2.
The types of echolocation signal and the auditory capacities of echolocating bats are adapted to specific acoustical constraints of the foraging areas. Bats hunting insects above the canopy use low frequencies for echolocation; this is an adaptation to prey detection over long distances. Bats foraging close to and within foliage avoid masking of insect echoes by specializing on 'fluttering target' detection. 'Gleaning' bats are adapted to the auditory detection of very faint noises generated by ground-dwelling prey, and are capable of analysing fine changes in the echo spectrum, which may indicate a stationary prey changing its posture on a substrate. This review of recent research demonstrates that, in bats, foraging ecology and audition are intricately interrelated and interdependent.  相似文献   

3.
Krieger  Kenneth J.  Wing  Bruce L. 《Hydrobiologia》2002,489(1-3):83-90
Our study showed that one species of water strider (Aquarius najas) dominated the insect fauna (>90% of the biomass) on and near the surface of a small stream in southern Sweden, but the diet of Daubenton's bats (Myotis daubentonii), regularly feeding over the same stream, contained <1% of these insects. To explain why the bats did not eat water striders in proportion to the apparent abundance of these insects, we tested three hypotheses, with the following results: (1) The water striders did not respond to artificial bat calls and therefore their defence against bats is not based on ultrasonic hearing. (2) Water striders hand-fed to the bats were eaten with similar frequency as palatable controls (caddis flies), so there is no evidence that water striders are unpalatable to bats. (3) Attempted prey-captures by the bats occurred less often than expected within 1 m of the bank of the stream (the bank consisted of a stone wall), indicating that the bats' flight or, alternatively, their detection or capture of insects, was difficult within that area, possibly constrained by clutter. At dusk and just before the bats emerged to feed, the water striders moved away from the open water. They remained motionless close to the bank for as long as the bats were active.  相似文献   

4.
Specialised predators foraging in the boundaries of adjacent ecosystems can control or redirect the flow of subsidies through trophic interception. Ecologically diverse predators can capture terrestrial invertebrates that fall on the water surface and, consequently, influence the flow of energy to aquatic environments. In this study, we show that the movement of prey triggers ripples on the surface of the water, and these stimuli are detected by bulldog bats (Noctilio albiventris, Noctilionidae) during foraging. Thus, the bats located live crickets (Gryllus assimilis, Gryllidae) on average of 15 times faster when compared to the location of dead or artificial crickets (i.e. without movements or ripples on the water surface). The bats also inspected (i.e. touched with their feet) all floating objects on the water surface. During this behaviour, the characteristics of the object (i.e. texture) were critical for bats to distinguish between debris (e.g. leaves and sticks) and the resource (i.e. insect carcasses) that floated on the water surface. In addition, when we compare the efficiency of predators (i.e. bats and fishes) in capturing this resource, our findings suggest that bats are extremely effective (i.e. consumed 100% of the available prey), since the fishes consumed only 40% of the available crickets on the surface of the water over a 60‐s period. These results bring novel information about the influence of prey‐based stimuli on the behaviour of its predators and, consequently, on the flow of nutrients between terrestrial and aquatic ecosystems.  相似文献   

5.
1. Riparian zones serve several ecological functions for bats. They provide a source of prey and likely provide favourable structural habitats and shelter from predators. Many studies have shown that bats use the space above streams, ponds or riparian vegetation as feeding habitat. These studies, however, have never distinguished between the effects of habitat structure and prey availability on the foraging activities of bats. Such effects can only be distinguished by an experimental approach. We predicted that bat activity along a stream is influenced by the number of emerged aquatic insects. 2. We evaluated the response of terrestrial consumers, insectivorous bats, to changes in the abundance of emergent aquatic insects by conducting a manipulative field experiment. In a deciduous riparian forest in Japan, aquatic insect flux from the stream to the riparian zone was controlled with an insect-proof cover over a 1.2 km stream reach. 3. We estimated the abundance of emergent aquatic and flying terrestrial arthropods near the treatment and control reaches using Malaise traps. The foraging activity of bats was evaluated in both treatment and control reaches using ultrasonic detectors. 4. The insect-proof cover effectively reduced the flux of emergent aquatic insects to the riparian zone adjacent to the treatment reach. Adjacent to the control reach, adult aquatic insect biomass was highest in spring, and then decreased gradually. Terrestrial insect biomass increased gradually during the summer at both treatment and control reaches. 5. Foraging activity of bats was correlated with insect abundance. In spring, foraging activity of bats at the control reach was significantly greater than at the treatment reach, and increased at both sites with increasing terrestrial insect abundance. 6. Our result suggests that the flux of aquatic insects emerging from streams is one of the most important factors affecting the distribution of riparian-foraging bats. As is the case with other riparian consumers, resource subsidies from streams can directly enhance the performance or population density of riparian-dependent bats. To conserve and manage bat populations, it is important to protect not only forest ecosystems, but also adjacent aquatic systems such as streams.  相似文献   

6.
食虫蝙蝠与昆虫之间的相互作用和协同进化关系   总被引:1,自引:0,他引:1  
食虫蝙蝠与昆虫之间是捕食和被捕食的关系,夜行性昆虫是食虫蝙蝠主要的食物来源。在漫长的协同进化中,蝙蝠施加的捕食压力导致夜行性昆虫一系列特征的进化,其中一部分昆虫进化出能听到蝙蝠的超声波信号并采取逃跑行为或者能通过其它方式躲避蝙蝠,同时昆虫的适应性特征同样影响着蝙蝠的回声定位和捕食策略。本文从蝙蝠捕食昆虫的种类、昆虫对蝙蝠捕食的反应和食虫性蝙蝠对昆虫防卫的适应对策等三个方面对食虫蝙蝠与昆虫之间的相互关系进行了概述。  相似文献   

7.
Foragers base their prey-selection decisions on the information acquired by the sensory systems. In bats that use echolocation to find prey in darkness, it is not clear whether the specialized diet, as sometimes found by faecal analysis, is a result of active decision-making or rather of biased sensory information. Here, we tested whether greater horseshoe bats decide economically when to attack a particular prey item and when not. This species is known to recognize different insects based on their wing-beat pattern imprinted in the echoes. We built a simulation of the natural foraging process in the laboratory, where the bats scanned for prey from a perch and, upon reaching the decision to attack, intercepted the prey in flight. To fully control echo information available to the bats and assure its unambiguity, we implemented computer-controlled propellers that produced echoes resembling those from natural insects of differing profitability. The bats monitored prey arrivals to sample the supply of prey categories in the environment and to inform foraging decisions. The bats adjusted selectivity for the more profitable prey to its inter-arrival intervals as predicted by foraging theory (an economic strategy known to benefit fitness). Moreover, unlike in previously studied vertebrates, foraging performance of horseshoe bats was not limited by costly rejections of the profitable prey. This calls for further research into the evolutionary selection pressures that sharpened the species's decision-making capacity.  相似文献   

8.
Poor knowledge of the intraspecific variability in echolocation calls is recognized as an important limiting factor for the accurate acoustic identification of bats. We studied the echolocation behaviors of an ecologically poorly known bat species, Myotis macrodactylus, while they were commuting in three types of habitats differing significantly in the amount of background clutter, as well as searching for prey above the water surface in a river. Results showed that M. macrodactylus altered their echolocation call structure in the same way during commuting as foraging bats do in relation to the changing level of clutter. With increasing level of clutter, M. macrodactylus generally produced echolocation calls with higher start, end, and peak frequencies; wider bandwidth; and shorter pulse duration. Compared to commuting, bats emitted significantly lower frequency calls with narrower bandwidth while searching for prey. Discriminant function analysis indicated that 79.8% of the calls from the three commuting habitats were correctly grouped, and 87% of the calls were correctly classified to the commuting and foraging contexts. Our finding has implications for those who would identify species by their calls.  相似文献   

9.
Classification of insects by echolocating greater horseshoe bats   总被引:1,自引:0,他引:1  
Summary Echolocating greater horseshoe bats (Rhinolophus ferrumequinum) detect insects by concentrating on the characteristic amplitude- and frequency modulation pattern fluttering insects impose on the returning echoes. This study shows that horseshoe bats can also further analyse insect echoes and thus recognize and categorize the kind of insect they are echolocating.Four greater horseshoe bats were trained in a twoalternative forced-choice procedure to choose the echo of one particular insect species turning its side towards the bat (Fig. 1). The bats were able to discriminate with over 90% correct choices between the reward-positive echo and the echoes of other insect species all fluttering with exactly the same wingbeat rate (Fig. 4).When the angular orientation of the reward-positive insect was changed (Fig. 2), the bats still preferred these unknown echoes over echoes from other insect species (Fig. 5) without any further training. Because the untrained bats did not show any prey preference, this indicates that the bats were able to perform an aspect-anglein-dependent classification of insects.Finally we tested what parameters in the echo were responsible for species recognition. It turned out that the bats especially used the small echo-modulations in between glints as a source of information (Fig. 7). Neither the amplitudenor the frequencymodulation of the echoes alone was sufficient for recognition of the insect species (Fig. 8). Bats performed a pattern recognition task based on complex computations of several acoustic parameters, an ability which might be termed cognitive.Abbreviations AM amplitude modulation - CF constant frequency - FM frequency modulation - S+ positive stimulus - S- negative stimulus  相似文献   

10.
Wounds and the origin of blood-feeding in bats   总被引:2,自引:0,他引:2  
This new theory about the origin of blood-feeding in bats is based on four main premises: (1) that the diets and feeding behaviour of some bats have always varied; (2) that the Miocene mammal fauna of South America included many large (≥ 2 kg body mass) forms; (3) that wounds offered protovampaire bats the opportunity to feed on blood; and (4) that sharp, strong upper incisor teeth were a prerequisite to feeding at wounds. This theory proposes that variation in feeding behaviour led protovampire bats to feed on concentrations of insect larvae at wounds on large mammals, thence to insects and body fluids, and finally to blood. The chiropteran family Phyllostomidae is confined to the New World and its members frequently have robust upper incisor teeth and flexible foraging behaviour. Elsewhere in the world, bats with flexible foraging behaviour lack robust incisors, while those with robust incisors are more conservative in their foraging. The wound theory of the origin of blood-feeding in bats takes into account their anatomy and foraging behaviour as well as the availability of large prey. In contrast to earlier theories that blood-feeding in bats originated from fruit-eaters with robust incisors or through the gleaning of ectoparasites, the wound theory also explains why vampire bats occur only in the New World.  相似文献   

11.
Sewage treatment works (STWs) with percolating filter beds are known to provide profitable foraging areas for insectivorous birds because of their association with high macroinvertebrate densities. Fly larvae developing on filter beds at STWs may similarly provide a valuable resource for foraging bats. Over the last two decades, however, there has been a decline in filter beds towards a system of 'activated sludge'. Insects and bat activity were surveyed at 30 sites in Scotland using these two different types of sewage treatment in order to assess the possible implications of these changes for foraging bats. Bat activity (number of passes) recorded from broad-band bat detectors was quantified at three points within each site. The biomass of aerial insects, sampled over the same period as the detector surveys, was measured using a suction trap. The biomass of insects and activity of Pipistrellus spp. were significantly higher at filter beds than at activated sludge sites. In addition, although foraging activity of Pipistrellus spp. at filter beds was comparable to that of adjacent 'good' foraging habitat, foraging at activated sludge sites was considerably lower. This study indicates the high potential value of an anthropogenic process to foraging bats, particularly in a landscape where their insect prey has undergone a marked decline, and suggests that the current preference for activated sludge systems is likely to reduce the value of treatment works as foraging sites for bats.  相似文献   

12.
Gareth  Jones 《Journal of Zoology》1995,237(2):303-312
The noctule Nyctulus noctula (Schreber, 1774) is a relatively large (c. 25 g) insectivorous bat which catches insects on the wing (by aerial hawking). Emergence at a maternity roost was earliest relative to sunset when females were lactating, and bats may then have risked predation by flying at higher light levels during a period of high energy demand. Flight performance was quantified by using stereophotogrammetry. At feeding sites bats flew at 6.0 ± 2.1 m/s. This was faster than predicted minimum power speed (V mp), and either between V mp and maximum range speed (V mr), or close to their predicted V mr, depending on which aerodynamic model of flight power requirements was used. The echolocation behaviour of noctules is flexible. Long duration, low frequency calls (c. 20 kHz) with little frequency modulation were emitted while cruising, but at foraging sites the calls became more frequency-modulated. As the noctule is traditionally thought of as using low frequency echolocation, it was expected to receive weak echoes from small targets and therefore to specialize in eating large insect prey. Although the bats ate mainly beetles, large numbers of small dipterans were also eaten. The noctule is probably able to detect such small items because, when foraging, its calls become broadband and sweep from high frequencies. Higher harmonics are also present, and these may assist in the detection of small prey. In noctules, as in many bats, there appears to be a 1:1 link between wingbeat and call production during the search phase of foraging.  相似文献   

13.
Utilizing a three-ramp platform, we studied the detection of a revolving and a stationary target in the presence of background clutter by trained Eptesicus fuscus. During the test, the mean amplitude of echo from either target was always larger than that of the background echoes at the bat-to-target distance of 30, 70 and 100 cm. The amplitude of the echo reflected back from a revolving target was modulated between a maximum and a minimum value. An electric motor was used to revolve a target. The frequency contents of the motor noise were mostly below 1 kHz. While the total percent response of approaching either target is always more than 90% at every bat-to-target distance tested, the bats approach a revolving target more frequently than a stationary one. Echolocation pulses emitted by the bats during the test were recorded and analyzed. The bats shortened their pulse durations and interpulse intervals and lowered the frequency contents as they entered into the crawling phase from the searching phase. Potential interference of background echoes and ambient noise with the performance of the bats is discussed. The preference of a revolving target to a stationary one by the bats is perhaps due to the fact that a revolving target has a higher releasing value than a stationary one does.  相似文献   

14.
Big brown bats (Eptesicus fuscus) use biosonar to find insect prey in open areas, but they also find prey near vegetation and even fly through vegetation when in transit from roosts to feeding sites. To evaluate their reactions to dense, distributed clutter, bats were tested in an obstacle array consisting of rows of vertically hanging chains. Chains were removed from the array to create a curved corridor of three clutter densities (high, medium, low). Bats flew along this path to receive a food reward after landing on the far wall. Interpulse intervals (IPIs) varied across clutter densities to reflect different compromises between using short IPIs for gathering echoes rapidly enough to maneuver past the nearest chains and using longer IPIs so that all echoes from one sound can be received before the next sound is emitted. In high-clutter density, IPIs were uniformly shorter (20–65 ms) than in medium and low densities (40–100 ms) and arranged in “strobe groups,” with some overlap of echo streams from different broadcasts, causing pulse-echo ambiguity. As previously proposed, alternating short and long IPIs in strobe groups may allow bats to focus on large-scale pathfinding tasks as well as close-in obstacle avoidance.  相似文献   

15.
We studied food intake of and estimated ingested energy in female and male Myotis daubentonii during the periods of pregnancy (period 1, 8 May–4 June) and of intense spermatogenetic activity (period 2, 24 July–22 August) over 8 years (1996–2003) in central Germany. We used radiotelemetry to determine the time spent foraging and marked animals with chemiluminescent light-sticks to determine prey attack rates. Body length, body mass, moisture content, and caloric content of chironomids, the main prey of Daubenton’s bats, were measured to estimate the nightly food intake and, in consequence, energy intake. Pregnant females spent significantly more time foraging than males during period 1 and females during the post-lactation period. In contrast, male foraged longer during the period of highest spermatogenetic activity than during late spring and also significantly longer than post-lactating females. Based on a mean number of 8.3 prey attacks per minute, the time spent foraging, and a capture success rate of either 50 or 92%, calculated intake values with a feeding rate of 7.6 insects per minute (=92% capture success) were more consistent with literature data for other insectivorous bats than that of values calculated on the basis of a capture success rate of 50%. In the high capture-success model, calculated insect intake of female bats was 8.0 g during pregnancy and 4.9 g per day during post-lactation, providing 5.0 and 3.0 kJ of ingested energy per gram body mass per day. Calculated intake of male bats was 3.6 g insects per day during late spring and 8.0 g during period of intensive spermatogenesis, providing 2.6 and 5.7 kJ of ingested energy per gram body mass.  相似文献   

16.
The diet of the long-fingered bat Myotis capaccinii is poorly known, and there is no previously recorded information on this species' prey preferences. To investigate these subjects, we captured 51 individuals at a nursery cave in the Iberian Peninsula, from pre-breeding to post-lactation seasons. Each bat's diet composition was assessed by faecal content analysis and its foraging places (rivers, pools and channels) identified by radio-telemetry. To estimate prey availability, we sampled arthropods in the individual bats' identified foraging places and also emulated the bats' hunting technique. The bats' diet comprised of arthropods, dominated by small insects with aquatic larvae and flying adult phases. The most consumed taxon was Nematocera (mainly Chironomidae), including adults and pupae, which were also found to be the most abundant prey over water. Other frequently consumed prey were brachycerans, lepidopterans, arachnids, trichopterans and neuropterans. Diet proportions were compared with prey availability to infer a rank of preferences. The preferred prey were lepidopterans and arachnids, both having a terrestrial life cycle and a bigger size than any other taxa consumed. Without discarding the possible underestimation of prey's aerial availability, the observed preference pattern seems to be a consequence of selection for size more than for specific taxa. Apparently M. capaccinii efficiently exploit water-related prey according to availability when the bats hunt low over the water's surface, and are also able to take more profitable prey found higher in the air.  相似文献   

17.
In southern Central America, 10 species of emballonurid bats occur, which are all aerial insectivores: some hunt flying insects preferably away from vegetation in open space, others hunt in edge space near vegetation and one species forages mainly over water. We present a search call design of each species and link signal structure to foraging habitat. All emballonurid bats use a similar type of echolocation call that consists of a central, narrowband component and one or two short, frequency-modulated sweeps. All calls are multi-harmonic, generally with most energy concentrated in the second harmonic. The design of search calls is closely related to habitat type, in particular to distance of clutter. Emballonurid bats foraging in edge space near vegetation and over water used higher frequencies, shorter call durations and shorter pulse intervals compared with species mostly hunting in open, uncluttered habitats. Peak frequency correlated negatively with body size. Regular frequency alternation between subsequent calls was typical in the search sequences of four out of 10 species. We discuss several hypotheses regarding the possible role of this frequency alternation, including species identification and partitioning of acoustic channels. Furthermore, we propose a model of how frequency alternation could increase the maximum detection distance of obstacles by marking search calls with different frequencies.  相似文献   

18.
While the evasive responses of many flying acoustic insects to aerial‐hawking bats are duly recognized and studied, the responses of non‐aerial insects to gleaning bats are generally overlooked. It has been assumed that acoustic insects are deaf to these predators because gleaning bat echolocation calls are typically low in amplitude, brief (1–3 ms) and very high in frequency (>60 kHz). We tested this assumption in a series of playback experiments with a moth (Achroia grisella) that uses hearing in both predator evasion and mating. We report that ultrasound pulses ≥78 dB peSPL (peak equivalent sound pressure level) and ≥1 ms in duration inhibit stationary males from broadcasting their own ultrasonic advertisement calls, provided that the pulsed stimuli are delivered at a repetition rate ≤30/s. Further analyses suggest that inhibition by pulsed ultrasound comprises two processes performed serially. First, a startle response with a latency <50 ms is elicited by a single pulse ≥1 ms duration. Here, a male misses broadcasting several calls over a 50–100 ms interval. Secondly, the startle may be extended as a silence response lasting several to many seconds if subsequent pulses occur at a rate ≤30/s. Call inhibition cannot represent a simple response to acoustic power because of the inverse interaction between pulse duration and rate. On the other hand, the temporal and energy characteristics of inhibitory stimuli match those of gleaning bat echolocation calls, and we infer that inhibition is a specialized defensive behavior by which calling males may avoid detection by eavesdropping bats.  相似文献   

19.
Foraging and diet of the northern bat Eptesicus nilssoni in Sweden   总被引:1,自引:0,他引:1  
Jens Rydell 《Ecography》1986,9(4):272-276
Northern bats foraged predominantly in small individual and transient feeding sites usually in open places near trees and over water. Lakes were preferred as foraging habitat as compared to woodlands and farmlands. The pattern of habitat selection did not change drastically during the period of reproduction. The diet was probably unselective, consisting mainly of small dipterans and moths and also caddis flies, lacewings and mayflies (lake area) and dung beetles (farmland). Northern bats consumed insects of 3–30 mm body length, thus taking prey items of a broader size range than other bat species studied.  相似文献   

20.
During hunting, bats of suborder Microchiropetra emit intense ultrasonic pulses and analyze the weak returning echoes with their highly developed auditory system to extract the information about insects or obstacles. These bats progressively shorten the duration, lower the frequency, decrease the intensity and increase the repetition rate of emitted pulses as they search, approach, and finally intercept insects or negotiate obstacles. This dynamic variation in multiple parameters of emitted pulses predicts that analysis of an echo parameter by the bat would be inevitably affected by other co-varying echo parameters. The progressive increase in the pulse repetition rate throughout the entire course of hunting would presumably enable the bat to extract maximal information from the increasing number of echoes about the rapid changes in the target or obstacle position for successful hunting. However, the increase in pulse repetition rate may make it difficult to produce intense short pulse at high repetition rate at the end of long-held breath. The increase in pulse repetition rate may also make it difficult to produce high frequency pulse due to the inability of the bat laryngeal muscles to reach its full extent of each contraction and relaxation cycle at a high repetition rate. In addition, the increase in pulse repetition rate increases the minimum threshold (i.e. decrease auditory sensitivity) and the response latency of auditory neurons. In spite of these seemingly physiological disadvantages in pulse emission and auditory sensitivity, these bats do progressively increase pulse repetition rate throughout a target approaching sequence. Then, what is the adaptive value of increasing pulse repetition rate during echolocation? What are the underlying mechanisms for obtaining maximal information about the target features during increasing pulse repetition rate? This article reviews the electrophysiological studies of the effect of pulse repetition rate on multiple-parametric selectivity of neurons in the central nucleus of the inferior colliculus of the big brown bat, Eptesicus fuscus using single repetitive sound pulses and temporally patterned trains of sound pulses. These studies show that increasing pulse repetition rate improves multiple-parametric selectivity of inferior collicular neurons. Conceivably, this improvement of multiple-parametric selectivity of collicular neurons with increasing pulse repetition rate may serve as the underlying mechanisms for obtaining maximal information about the prey features for successful hunting by bats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号