首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allogeneic bone-marrow transplantation (BMT) can induce a powerful graft-vs.-tumor (GVT) effect not only on hematological malignancies but also on solid tumors. However, graft-vs.-host disease (GVHD) is a major complication of allogeneic BMT. We assessed GVT effect on hepatocellular carcinoma (HCC) and the effects of hepatocyte growth factor (HGF) gene transduction on GVHD in HCC transplanted mice. (C57BL/6 x C3H/HeJ)F(1)(B6C3F1, H-2(bxk)) mice were used as recipients and C3H/HeJ(H-2(k)) mice were used as donors. Hepa1-a (a C57L mouse-derived hepatoma cell, H-2(b)) was subcutaneously injected into the recipient mice. Tumor bearing mice were treated in the following ways: group 1, no treatment; group 2, total body irradiation (TBI); group 3, TBI and BMT; group 4, TBI and BMT with empty vector; group 5, TBI and BMT with HGF gene transduction; group 6, TBI and BMT with administration of FK506, a representative immunosuppressive agent. Acute GVHD was assessed by histological examination of the liver, small intestines, and large intestines. Tumor growth was markedly suppressed in mice that received an allogeneic BMT. Donor-derived CD8(+) T cells had infiltrated into the tumor, and cytotoxic CD8(+) T cells against HCC were present. However, among the four groups that received a BMT, this suppressive effect was weaker in group 6 compared with the other three groups (groups 3, 4, and 5). HGF gene transduction improved GVHD while preserving the GVT effects. Allogeneic BMT markedly suppresses the growth of HCC. Simultaneous HGF gene transfer can suppress GVHD while preserving the GVT effect.  相似文献   

2.
The aim of this study was to compare the effectiveness of immunosuppressant FK 506 and the specific inhibitor of inducible nitric oxide synthase (iNOS) aminoguanidine (AG) in prevention of corneal graft rejection and to investigate the iNOS expression in the rejection process. Orthotopic corneal allografting in mice was performed (C57BL/10; H-2(b) to BALB/c; H-2(d)). FK 506 (0.3 mg/kg per day) or AG (100 mg/kg per day) was injected intraperitoneally for 4 weeks. Grafted mice without therapy served as controls. Immunohistological evaluation of iNOS-positive cells and macrophage infiltration in grafts 27th day after grafting was performed. Within 4 weeks FK 506 prevented graft rejection in 71% and AG in 57% of animals compared to 29% of clear grafts in controls. A significant proportion of iNOS-positive cells was detected in the rejected grafts of the control and AG-treated groups. The treatment with FK 506 resulted in the inhibition of iNOS expression to a high degree in the rejected corneas. Non-rejected corneas of all groups and non-transplanted corneas exhibited no iNOS-positive cells. A massive infiltration of macrophages was detected in the rejected grafts, whereas non-rejected grafts exhibited only slight infiltration of macrophages. The presented data suggest that overexpression of iNOS and/or activation of iNOS is one of the several influential factors that contribute to the rejection process and that iNOS suppression delays corneal allograft rejection. FK 506 and AG are effective drugs in preventing corneal allograft rejection. Higher beneficial effect of FK 506 on graft survival could be explained by its well-known selective T-cell immunosuppression.  相似文献   

3.
A cytokine gene therapy approach was conducted against metastatic lesions of cytotoxic T lymphocyte (CTL)-unsusceptible tumor in mice. The EBV-based and conventional plasmid vectors that encode murine interleukin-12 (IL-12) gene (pGEG.mIL-12 and pG.mIL-12, respectively) were intravenously transfected into the mice that had received a subcutaneous inoculation of M5076 sarcoma cells. The pGEG.mIL-12 transfection drastically suppressed the subcutaneous as well as hepatic metastatic tumors, resulting in significant prolongation of survival period of the animals. Although single administration with pG.mIL-12 was not effective, repetitive transfection with the plasmid significantly prolonged the longevity of the mice-bearing the metastatic liver tumors. Multiple transfection with either pGEG.mIL-12 or pG.mIL-12 also suppressed peritoneal carcinomatosis in mice that had been injected with M5076 cells into the peritoneal cavity. It was suggested that a high level IL-12 production elicited by the intravenous delivery of the cytokine gene may be quite effective in inhibiting metastatic and CTL-unsusceptible neoplasms.  相似文献   

4.
We examined the antitumor effects of eosinophils to explore the potential of eosinophils as effector cells in tumor cytotoxicity. We expressed eotaxin in hepatocellular carcinoma cells, MH134, and injected them into either normal or IL-5 TG mice intradermally and monitored cell growth. In normal mice, growth of MH134 cells containing the expression plasmid pCXN2-eotaxin was similar to that of vector-transfected MH134 cells for a period of 2 weeks, suggesting that expression of eotaxin does not change the growth rate of tumor cells. In IL-5 TG mice, however, the growth of eotaxin expressing MH134 cells was significantly suppressed. LPS induced eosinophils to produce TNF-alpha to kill MH134 cells in vitro. Intratumor injection of LPS is effective to kill MH134-pCXN2 and MH134-pCXN2-eotaxin only in normal mice. Administration of anti-CD4 or anti-CD8 antibodies suppressed growth of MH134-pCXN2-eotaxin cells compared with control antibodies, suggesting that T cells may interfere with immunity against MH134. Administration of anti-IL-5Ralpha and anti-asialo GM1 antibodies enhanced growth of MH134-pCXN2-eotaxin cells, suggesting involvement of eosinophils and NK cells in suppression of tumor cell growth. Although we cannot exclude the possibility that NK cells participate in tumor cell killing in vivo, the presence of NK markers such as DX5, asialo GM1, Ly49, and CD94, and NKG2D on large numbers of eosinophils activated by eotaxin suggests that eosinophils function in such suppression of tumor cell growth. Furthermore, we showed that anti-NKG2D antibodies could significantly inhibit the LPS-induced cytotoxicity against MH134 by highly enriched fraction of eosinophils.  相似文献   

5.
In situ expression of a foreign antigen and an immune-modulating cytokine by intratumoral DNA electroporation was tested as a cancer therapy regimen. Transgene expression in the tumors was sustained for 2–3 weeks after intratumoral electroporation with mammalian expression plasmid containing firefly luciferase cDNA. Electroporation with cDNA encoding tetanus toxin fragment C (TetC) induced tetanus toxin-binding antibody, demonstrating immune recognition of the transgene product. Intratumoral electroporation with TetC and IL-12 cDNA after mice were treated with CD25 mAb to remove regulatory T cells induced IFN-γ producing T-cell response to tumor-associated antigen, heavy inflammatory infiltration, regression of established tumors and immune memory to protect mice from repeated tumor challenge. Intratumoral expression of immune-modulating molecules may be most suitable in the neoadjuvant setting to enhance the therapeutic efficacy and provide long-term protection.  相似文献   

6.
Natural killer (NK) cells play an important role in combating infectious and malignant diseases and interleukin-2 (IL-2) has been shown to promote proliferation and activation of NK cells in vitro and in vivo. Here we investigate the effects of local cationic lipid-mediated IL-2 gene transfer on intratumoral accumulation and activation of NK cells in a SCID mouse tumor model. UM449 human melanoma tumors in SCID mice received intratumoral injections of DMRIE/DOPE admixed with VR1103, a DNA plasmid encoding the gene for human IL-2. Dissagregated tumor cells were tested for IL-2 secretion and were characterized using antibodies to asGM1, MAC-1, and F4/80 antigens. Granzyme A, a proteolytic serine esterase, was also measured in tumor cell lysates. IL-2 secretion from tumors injected with VR1103:DMRIE/DOPE peaked at 48 h after injection and fell to baseline levels on day 8. Intratumoral granzyme A activity was significantly increased in tumors injected with IL-2 plasmid:DMRIE/DOPE complexes, but not by an irrelevant plasmid DNA:DMRIE/DOPE control. Importantly, the growth of UM449 tumors was slowed in VR1103:DMRIE/DOPE-injected tumors. These results indicate that local cationic lipid-mediated gene transfer of IL-2 induces activation of intratumoral NK cells and slows tumor growth.  相似文献   

7.
Summary The present study investigates some of mechanisms for tumor-specific Lyt-1+2 T cell-mediated tumor cell eradication in vivo through analyses of tumor specificity in the afferent tumor recognition and efferent rejection phases. When C3H/He mice which had acquired immunity against syngeneic MH134 hepatoma were challenged with other syngeneic X5563 plasmacytoma cells, these mice failed to exhibit any inhibitory effect on the growth of X5563 tumor cells. However, the inoculation of X5563 tumor cells into the MH134-immune C3H/He mice together with the MH134 tumor cells resulted in appreciable growth inhibition of antigenically distinct (bystander) X5563 tumor cells. Although the growth of X5563 cells was inhibited in an antigen-nonspecific way in mice immunized to antigenically unrelated tumor cells (bystander effect), the activation of Lyt-1+2 T cells leading to this effect was strictly antigen-specific. Such a bystander growth inhibition also required the admixed inoculation of the bystander (X5563) and specific target (MH134) tumor cells into a single site in mice immunized against the relevant MH134 tumor cells. Furthermore, the results demonstrated that Lyt-1+2 T cells specific to MH134 tumor cells were responsible for mediating the growth inhibition of antigenically irrelevant (bystander) and relevant tumor cells. These results are discussed in the context of cellular and molecular mechanisms involved in the Lyt-1+2 T cell-initiated bystander phenomenon.This work was supported by Special Project Research-Cancer Bioscience from the Ministry of Education, Science and Culture  相似文献   

8.
The FKBP-12-binding ligand FK506 has been successfully used to stimulate nerve regeneration and prevent the rejection of peripheral nerve allografts. The immunosuppressant rapamycin, another FKBP-12-binding ligand, stimulates axonal regeneration in vitro, but its influence on nerve regeneration in peripheral nerve isografts or allografts has not been studied. Sixty female inbred BALB/cJ mice were randomized into six tibial nerve transplant groups, including three isograft and three allograft (C57BL/6J) groups. Grafts were left untreated (groups I and II), treated with FK506 (groups III and IV), or treated with rapamycin (groups V and VI). Nerve regeneration was quantified in terms of histomorphometry and functional recovery, and immunosuppression was confirmed with mixed lymphocyte reactivity assays. Animals treated with FK506 and rapamycin were immunosuppressed and demonstrated significantly less immune cell proliferation relative to untreated recipient animals. Although every animal demonstrated some functional recovery during the study, animals receiving an untreated peripheral nerve allograft were slowest to recover. Isografts treated with FK506 but not rapamycin demonstrated significantly increased nerve regeneration. Nerve allografts in animals treated with FK506, and to a lesser extent rapamycin, however, both demonstrated significantly more nerve regeneration and increased nerve fiber widths relative to untreated controls. The authors suggest that rapamycin can facilitate regeneration through peripheral nerve allografts, but it is not a neuroregenerative agent in this in vivo model. Nerve regeneration in FK506-treated peripheral nerve isografts and allografts was superior to that found in rapamycin-treated animals. Rapamycin may have a role in the treatment of peripheral nerve allografts when used in combination with other medications, or in the setting of renal failure that often precludes the use of calcineurin inhibitors such as FK506.  相似文献   

9.
In the 1990s, based on the results of studies using beta(2)M, CD4 or CD8 knockout mice, several groups reported that the main effector cells responsible for skin or organ allograft rejection were non-T, non-NK cells. Similarly, we demonstrated that in an animal model of transplantation of BALB/c (H-2(d)) skin onto or Meth A (H-2(d)) tumor cells into C57BL/6 (H-2(b)) mice, AIM, which expressed iNOS, IL-12, and IL-18, were the main effector cells and also that they were cytotoxic against syngeneic tumor cells. Here, we examined whether the same population of macrophages could react with two distinct types of target cell. When BALB/c skin or Meth A tumor cells were transplanted into C57BL/6 mice, cytotoxic activity against the allograft was induced in the transplantation site on days 5-14 and was recovered in non-adherent cells after a 20-min incubation in a serum-coated dish, suggesting the induction of a type of AIM (AIM-1) in the transplantation site. The AIM-1-expressing receptors for H-2D(d)K(d) antigens had no cytotoxic activity against syngeneic tumor cells. In contrast, AIM-2, which were recovered in the fraction adherent to the serum-coated dish, exhibited cytotoxic activities against various types of tumor cells, whereas they were inactive toward BALB/c skin. AIM expressed iNOS (AIM-1 < AIM-2), IL-12 (AIM-1 > AIM-2), and IL-18 (AIM-2 alone) mRNAs. These results indicate that after allografting, two distinct types of cytotoxic AIM were induced in the transplantation site, one against the allografted skin or tumor (AIM-1) and the other against allogeneic or syngeneic tumor cells (AIM-2).  相似文献   

10.
Diabetes mellitus was induced in 40 male C57BL6 mice by injection of a low dose of streptozocin (45 mg/kg body weight) on 5 consecutive days. Twenty four of the mice were immunosuppressed by administration of 1.5 mg FK506/kg body weight daily for 10, 15, 18 and 24 days. Administration of FK506 almost completely inhibited the streptozocin-induced islet damage, and consequently glycaemia remained normal. In FK506-treated animals any inflammatory infiltrate was very sparse and was limited to the vascular pole of the islets. Immunocytochemical results demonstrated that infiltrating cells were Ia-immunoreactive, but were not activated. Ultrastructural observations confirmed the absence of B cell necrosis and degranulation in FK506-treated mice; the few infiltrating elements encountered did not contain phagocytic vesicles or show other signs of activation.  相似文献   

11.
The immunosuppressant Tacrolimus (FK506) has increased the survival rates of organ transplantation. FK506 exerts its immunosuppressive effect by inhibition of the protein phosphatase calcineurin in activated T-cells. Unfortunately, FK506 therapy is associated with undesired non-therapeutic effects involving targets other than calcineurin. To identify these targets we have addressed FK506 cellular toxicity in budding yeast. We show that FK506 increased cell sensitivity upon osmotic challenge independently of calcineurin and the FK506-binding proteins Fpr1p, -2p, -3p, and -4p. FK506 also induced strong amino acid starvation and activation of the general control (GCN) pathway. Tryptophan prototrophy or excess tryptophan overcame FK506 toxicity, showing that tryptophan deprivation mediated this effect. Mutation of the GCN3 and -4 genes partially alleviated FK506 toxicity, suggesting that activation of the GCN pathway by FK506 was also involved in osmotic tolerance. FK506 enhanced osmotic stress-dependent Hog1p kinase phosphorylation that was not accompanied by induction of a Hog1p-dependent reporter. Interestingly, deletion of the GCN2 gene suppressed FK506-dependent Hog1p hyperphosphorylation and restored Hog1p-dependent reporter activity. Conversely, deletion of the HOG1 gene impaired FK506-dependent activation of Gcn2p kinase and translation of a GCN4-LacZ reporter, highlighting functional cross-talk between the Gcn2p and Hog1p protein kinases. Taken together, these data demonstrate that both FK506-induced amino acid starvation and activation of the GCN pathway contribute to cell sensitivity to osmotic stress and reveal a positive regulatory loop between the Hog1p and Gcn2p pathways. Given the conserved nature of Gcn2p and Hog1p pathways, this mechanism of FK506 toxicity could be relevant to the non-therapeutic effects of FK506 therapy.  相似文献   

12.
肌肉内转内抑素基因对肿瘤生长的抑制作用   总被引:3,自引:0,他引:3  
 为研究骨骼肌及肿瘤内介导的内抑素基因转移对肿瘤生长的作用 ,利用基因克隆技术构建了内抑素基因真核表达质粒 ,应用电脉冲转移法将质粒转入转肿瘤小鼠骨骼肌或肿瘤中 .结果表明 ,内抑素基因可在骨骼肌或肿瘤内表达 ,并显著抑制肿瘤生长 .这为内抑素基因在肿瘤治疗中的应用进行了探索  相似文献   

13.
Invasive aspergillosis, largely caused by Aspergillus fumigatus, is responsible for a growing number of deaths among immunosuppressed patients. Immunosuppressants such as FK506 (tacrolimus) that target calcineurin have shown promise for antifungal drug development. FK506-binding proteins (FKBPs) form a complex with calcineurin in the presence of FK506 (FKBP12-FK506) and inhibit calcineurin activity. Research on FKBPs in fungi is limited, and none of the FKBPs have been previously characterized in A. fumigatus. We identified four orthologous genes of FKBP12, the human FK506 binding partner, in A. fumigatus and designated them fkbp12-1, fkbp12-2, fkbp12-3, and fkbp12-4. Deletional analysis of the four genes revealed that the Δfkbp12-1 strain was resistant to FK506, indicating FKBP12-1 as the key mediator of FK506-binding to calcineurin. The endogenously expressed FKBP12-1-EGFP fusion protein localized to the cytoplasm and nuclei under normal growth conditions but also to the hyphal septa following FK506 treatment, revealing its interaction with calcineurin. The FKBP12-1-EGFP fusion protein didn’t localize at the septa in the presence of FK506 in the cnaA deletion background, confirming its interaction with calcineurin. Testing of all deletion strains in the Galleria mellonella model of aspergillosis suggested that these proteins don’t play an important role in virulence. While the Δfkbp12-2 and Δfkbp12-3 strains didn’t show any discernable phenotype, the Δfkbp12-4 strain displayed slight growth defect under normal growth conditions and inhibition of the caspofungin-mediated “paradoxical growth effect” at higher concentrations of the antifungal caspofungin. Together, these results indicate that while only FKBP12-1 is the bona fide binding partner of FK506, leading to the inhibition of calcineurin in A. fumigatus, FKBP12-4 may play a role in basal growth and the caspofungin-mediated paradoxical growth response. Exploitation of differences between A. fumigatus FKBP12-1 and human FKBP12 will be critical for the generation of fungal-specific FK506 analogs to inhibit fungal calcineurin and treat invasive fungal disease.  相似文献   

14.
The immunosuppressants cyclosporin A (CsA) and FK506 inhibit the protein phosphatase calcineurin and block T-cell activation and transplant rejection. Calcineurin is conserved in microorganisms and plays a general role in stress survival. CsA and FK506 are toxic to several fungi, but the common human fungal pathogen Candida albicans is resistant. However, combination of either CsA or FK506 with the antifungal drug fluconazole that perturbs synthesis of the membrane lipid ergosterol results in potent, synergistic fungicidal activity. Here we show that the C.albicans FK506 binding protein FKBP12 homolog is required for FK506 synergistic action with fluconazole. A mutation in the calcineurin B regulatory subunit that confers dominant FK506 resistance (CNB1-1/CNB1) abolished FK506-fluconazole synergism. Candida albicans mutants lacking calcineurin B (cnb1/cnb1) were found to be viable and markedly hypersensitive to fluconazole or membrane perturbation with SDS. FK506 was synergistic with fluconazole against azole-resistant C.albicans mutants, against other Candida species, or when combined with different azoles. We propose that calcineurin is part of a membrane stress survival pathway that could be targeted for therapy.  相似文献   

15.
小鼠白细胞介素21瘤苗的构建及其抗肿瘤效应研究   总被引:5,自引:0,他引:5  
目的:建立稳定表达小鼠白细胞介素21(mIL-21)的肿瘤细胞瘤苗,观察其在小鼠体内是否能够诱导有效的抗肿瘤免疫反应及免疫记忆效应。方法:将已鉴定的重组质粒pcDNA3.1/mIL-21用脂质体法转染Sp2/0细胞制备瘤苗,RT-PCR法鉴定瘤苗中mIL-21的表达。通过流式细胞仪检测细胞周期来反映瘤苗体外增殖活性,再将其接种BALB/c小鼠,监测肿瘤生长情况,观察mIL-21瘤苗诱导的抗肿瘤效应;用ELISA法检测血清IFN-γ和IL-4含量。结果:得到稳定表达mIL-21的瘤苗Sp2/0-mIL-21。与对照组相比,体外增殖活性无差异。皮下接种BALB/c小鼠后,肿瘤生长缓慢,部分小鼠无瘤体生长并长期存活;用野生株Sp2/0瘤细胞再次攻击未长肿瘤的实验小鼠,4周后亦未见肿瘤生长。接种瘤苗小鼠血清中IFN-γ水平明显上升,IL-4无明显增高。结论:成功构建了mIL-21瘤苗Sp2/0-mIL-21,其能诱导有效的抗肿瘤免疫反应及免疫记忆效应。  相似文献   

16.
FK506 is a new FDA-approved immunosuppressant used for prevention of allograft rejection in, for example, liver and kidney transplantations. FK506 is inactive by itself and requires binding to an FK506 binding protein-12 (FKBP-12), or immunophilin, for activation. In this regard, FK506 is analogous to cyclosporin A, which must bind to its immunophilin (cyclophilin A) to display activity. This FK506-FKBP complex inhibits the activity of the serine/threonine protein phosphatase 2B (calcineurin), the basis for the immunosuppressant action of FK506. The discovery that immunophilins are also present in the nervous system introduces a new level of complexity in the regulation of neuronal function. Two important calcineurin targets in brain are the growth-associated protein GAP-43 and nitric oxide (NO) synthase (NOS). This review focuses on studies showing that systemic administration of FK506 dose-dependently speeds nerve regeneration and functional recovery in rats following a sciatic-nerve crush injury. The effect appears to result from an increased rate of axonal regeneration. The nerve regenerative property of this class of agents is separate from their immunosuppressant action because FK506-related compounds that bind to FKBP-12 but do not inhibit calcineurin are also able to increase nerve regeneration. Thus, FK506's ability to increase nerve regeneration arises via a calcineurin-independent mechanism (i.e., one not involving an increase in GAP-43 phosphorylation). Possible mechanisms of action are discussed in relation to known actions of FKBPs: the interaction of FKBP-12 with two Ca2+ release-channels (the ryanodine and inositol 1,4,5-triphosphate receptors) which is disrupted by FK506, thereby increasing Ca2+ flux; the type 1 receptor for the transforming growth factor-β (TGF-β1), which stimulates nerve growth factor (NGF) synthesis by glial cells, and is a natural ligand for FKBP-12; and the immunophilin FKBP-52/FKBP-59, which has also been identified as a heat-shock protein (HSP-56) and is a component of the nontransformed glucocorticoid receptor. Taken together, studies of FK506 indicate broad functional roles for the immunophilins in the nervous system. Both calcineurin-dependent (e.g., neuroprotection via reduced NO formation) and calcineurin-independent mechanisms (i.e., nerve regeneration) need to be invoked to explain the many different neuronal effects of FK506. This suggests that multiple immunophilins mediate FK506's neuronal effects. Novel, nonimmunosuppressant ligands for FKBPs may represent important new drugs for the treatment of a variety of neurological disorders.  相似文献   

17.
Interleukin 13 (IL-13) is immunoregulatory in many diseases, including cancer. The protective or suppressive role of CD1-restricted natural killer T cells (NKT cells) in tumor immunosurveillance and immunity is well documented. Interleukin 12 (IL-12) can activate type I NKT cells to produce interferon-gamma (IFN-gamma), whereas type II NKT cells may produce IL-13. The high-affinity chain of IL-13Ralpha2 may act as negative inhibitor, suppressing the action of IL-13 and helping to maintain tumor immunosurveillance. We constructed an mIL-13Ralpha2-Fc chimera in a eukaryotic expression vector and confirmed the identity of the recombinant protein by immunoblot analysis and binding to IL-13 in chemiluminescent ELISA. Such DNA vaccine was tested against syngeneic B16F10-Nex2 murine melanoma. In vivo experiments showed a protective effect mediated by high production of IFN-gamma and down-regulation of anti-inflammatory interleukins mainly by NKT 1.1(+) T cells. Biochemoterapy in vivo with plasmid encoding mIL-13Ralpha2-Fc in association with plasmid encoding IL-12 and the 7A cyclopalladated drug led to a significant reduction in the tumor evolution with 30% tumor-free mice. We conclude that IL-12 gene therapy, followed by continuous administration of IL-13Ralpha2-Fc gene along with 7A-drug has antitumor activity involving the high production of proinflammatory cytokines and low immune suppression, specifically by NK1.1(+)T cells producing IL-13 and IL-10.  相似文献   

18.
This study compared the efficacy of long-term intermittent immunosuppression in preventing the rejection of a limb transplant across the strongest histocompatibility barrier in ACI --> Lewis rats using the conventional immunosuppressive agent cyclosporine-A and the newer immunosuppressive agents FK-506 (tacrolimus) and RS-61443 (mycophenolate mofetil). The recipient animals were immunosuppressed daily for 14 days postoperatively, followed by long-term intermittent, twice-weekly immunosuppression using cyclosporine 25 mg/kg, RS-61443 30 mg/kg, or FK-506 2 mg/kg. All three immunosuppressive agents were able to prolong the rejection of the skin component of a limb transplant compared with nonimmunosuppressed controls. Eight of nine animals receiving cyclosporine immunosuppression showed signs of rejection of the skin component of the limb transplant while continuing to receive long-term immunosuppression and had a mean rejection time of 61.6 days. Seven of 10 animals immunosuppressed with RS-61443 also showed signs of rejection while still receiving immunosuppression, with a mean rejection time of 43.6 days. Nine of 10 animals receiving FK-506 immunosuppression showed no signs of skin rejection, but died of bacterial pneumonia between 273 and 334 days after transplantation, with a mean rejection time of 296.1 days. There was no statistically significant difference between intermittent immunosuppression with cyclosporine and RS-61443, but FK-506 was significantly superior to both cyclosporine and RS-61443. The implication of this study is that FK-506, but not cyclosporine or RS-61443, is probably the only single immunosuppressive agent capable of preventing rejection of the skin component of a composite tissue transplant. Combination immunosuppression with FK-506 and RS-61443, therefore, may be required to allow composite tissue transplantation to become a predictable clinical reality in the future.  相似文献   

19.
Summary The antitumor effect of a synthetic lipid A analogue, DT-5461, was investigated using syngeneic tumor models in mice. Intravenous injection of DT-5461 into mice transplanted with solid tumors of MethA fibrosarcoma, MH134 hepatoma, MM46 mammary carcinoma, Lewis lung carcinoma (3LL), and colon adenocarcinomas 26 and 38 resulted in significant reductions in the weight of all tumors except Colon 26, with marked hemorrhagic necrosis of tumor tissues. Efficacy was almost equal to that of anEscherichia coli-type synthetic lipid A (compound 506), and also to those of some chemotherapeutics including Adriamycin, mitomycin C, fluorouracil and cisplatin. Furthermore, DT-5461 was more effective than other immunotherapeutics, including picibanil (OK-432) and lentinan. However, its antitumor effects were inferior to those of Adriamycin or OK-432 against the malignant ascites caused by intraperitoneal inoculation with MethA or with MH134 cells; life span was not prolonged by either intraperitoneal or intravenous administration. In addition, although DT-5461 showed direct inhibitory effects on the in vitro growth of MethA or MH134, these were much weaker than those of Adriamycin. These findings clearly indicated that DT-5461 with systemic administration is a highly effective antitumor agent on solid tumors, and suggest that the antitumor effect of DT-5461 with potent necrotizing activity might derive from indirect mechanisms related to the activation of host immune systems and not to the weak direct cytotoxicity.  相似文献   

20.
The present study aimed to establish a novel efficient nonviral strategy for suicide gene transfer in hepatocellular carcinoma (HCC) in vivo. We employed branched polyethylenimine (PEI) and combined it with Epstein-Barr virus (EBV)-based plasmid vectors. The HCC cells transfected with an EBV-based plasmid carrying the herpes simplex virus-1 thymidine kinase (HSV-1 Tk) gene (pSES.Tk) showed up to 30-fold higher susceptibilities to ganciclovir (GCV) than those transfected with a conventional plasmid vector carrying the HSV-1 Tk gene (pS.Tk). The therapeutic effect in vivo was tested by intratumoral injection of the plasmids into HuH-7 hepatomas transplanted into C.B-17 scid/scid mutant (SCID) mice and subsequent GCV administrations. Treatment with pSES.Tk, but not pS.Tk, markedly suppressed growth of hepatomas in vivo, resulting in a significantly prolonged survival period of the mice. These findings suggest that PEI-mediated gene transfer system can confer efficient expression of the suicide gene in HCC cells in vivo by using EBV-based plasmid vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号