首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
神经退行性疾病是临床上常见的疾病,目前其治疗只停留在药物治疗及手术治疗阶段。由于神经细胞是难以再生的一种细胞类型,寻找替代神经细胞对神经退行性疾病移植治疗具有重要意义。现有研究表明,MSC(mesenchymal stem cell)、ESC(embryonic stem cell)或i PSC(induced pluripotent stem cell)能在体外分化为神经细胞,干细胞治疗神经退行性疾病具有良好的临床前景,但目前受到神经分化效率低、免疫排斥等因素的限制。研究显示,micro RNA具有参与神经发育和分化等作用,且具有重编程神经干细胞并治疗神经退行性疾病的能力。因此,该文就micro RNA参与体细胞的重编程诱导分化为神经细胞机制与作用等作一简要综述,探讨micro RNA对体细胞重编程调控作用和临床应用前景。  相似文献   

2.
内源性神经干细胞与脑老化的治疗   总被引:1,自引:0,他引:1  
近十几年研究发现成年人脑神经元可以再生,使人们重新认识老年脑神经细胞的可塑性,它为脑损伤的修复带来新的希望。最新研究表明,神经再生可被调控,是一种新的修复机制。这使得利用内源性神经干细胞治疗老龄相关的神经退行性疾病成为可能。  相似文献   

3.
神经营养因子   总被引:5,自引:0,他引:5  
沈强 《生物学通报》1999,34(10):15-16
神经营养因子是一类多肽,在神经系统的发育吕具有支持神经细胞生长,分化和生存,在成熟的神经系统中具有维持神经细胞生存与作用。在神经系统疾病中可能具有减轻或改善神经退行性改变的作用,对神经元有保护效应,并可促进神经元的再生与修复。  相似文献   

4.
在成体的许多组织中发现了多能干细胞,这些干细胞可以进行自我复制,参与组织的正常修复。神经干细胞在体外能分化为神经元、星形胶质细胞和少突胶质细胞,并具有多向分化潜能。成体神经干细胞和胚胎干细胞都能分化成成体神经系统中的各种神经细胞。神经干细胞具有自我更新能力,因此神经干细胞可以应用于神经损伤或者神经疾病的修复。本文概述了神经干细胞体外分离培养的方法及其生长影响因子。  相似文献   

5.
细胞自噬是一条依赖溶酶体降解的途径,它对于清除细胞质内蛋白质聚集体、损伤的细胞器,维持细胞内稳态等具有重要的生理功能。神经退行性疾病是一类由于突变蛋白质在神经细胞中堆积而引起的神经系统失调症。细胞自噬是清除胞质内蛋白质聚集体的重要途径,利用提高细胞自噬能力对神经退行性疾病进行治疗具有光明前景。简要介绍了细胞自噬的机制及细胞自噬与神经退行性疾病之间的关系。  相似文献   

6.
葛根素(puerarin)是从中药葛根中提取的主要有效成分之一,为一种异黄酮化合物。它具有抑制脑细胞凋亡,保护神经细胞的能力,还能够提高神经元抵抗损伤的能力,可用于治疗脑损伤以及神经退行性疾病。本文就葛根素对中枢神经系统神经细胞的保护作用及机制方面的研究进展做一综述。  相似文献   

7.
神经干细胞是指一类具有自我更新能力和多向分化潜能的细胞,能分化成为神经元、星形胶质细胞、少突胶质细胞等众多神经细胞。成年哺乳动物内源性神经再生能力有限,无法弥补因神经疾病而导致的神经细胞缺失,因而,人们开始寻求外源性神经干细胞移植治疗中枢神经系统疾病的可能,在动物模型上开展了大量研究,并建立了多种移植方法。该文就神经干细胞的特性、来源、移植方式、在中枢神经系统疾病中的实验研究进展等作一综述。  相似文献   

8.
近几年研究细胞外基质促进神经纤维生长的作用有惊人的发展。施旺细胞、未分化的神经胶质细胞,以及胚胎非神经细胞和神经细胞所形成细胞外基质中,层粘连蛋白分子(或它的亚单位、或它与其他分子结合的复合物等不溶性物质)与生长锥相互作用的结果对刺激和诱导神经纤维的生长起重要的作用。其他分子或可溶性物质对纤维生长也有一定的作用。以基膜形式存在的细胞外基质是促神经纤维生长最好的基底,并为脑损伤修复提供了应用前景。  相似文献   

9.
随着神经干细胞理论的提出,为神经系统疾病的治疗带来了很大的希望。神经干细胞(NSCs)是指自我更新、且具有分化为神经元、星形胶质细胞、少突胶质细胞等多向分化潜能的细胞。当中枢神经系统受到损伤或退行性变时,内源性神经干细胞开始启动神经修复,但受到数量及微环境的影响,作用非常有限。近年,人们采用各种体外培养方法,可以获得一定数量的外源性神经干细胞,在神经干细胞移植治疗各种神经系统疾病,包括缺血性脑卒中、帕金森病、阿尔茨海默病和脊髓损伤等方面做了很多动物及临床前研究。本文综述神经干细胞移植在神经系统疾病治疗中的应用。  相似文献   

10.
Notch信号通路是保守的细胞间信号通路,其在胚胎形成和器官发生过程中对于控制干细胞和祖细胞的增殖、分化发挥着至关重要的作用,是发育生物学、细胞生物学、免疫学及血液学等多个领域的研究热点之一。近来研究发现,多种疾病的发生与Notch信号异常有关。本文就Notch信号通路的组成以及在神经病理性疼痛、神经退行性行疾病、脑损伤、肿瘤等的调节作用机制的进行综述。  相似文献   

11.
Brain diseases, including brain tumors, neurodegenerative disorders, cerebrovascular diseases, and traumatic brain injuries, are among the major disorders influencing human health, currently with no effective therapy. Due to the low regeneration capacity of neurons, insufficient secretion of neurotrophic factors, and the aggravation of ischemia and hypoxia after nerve injury, irreversible loss of functional neurons and nerve tissue damage occurs. This damage is difficult to repair and regenerate the central nervous system after injury. Neural stem cells (NSCs) are pluripotent stem cells that only exist in the central nervous system. They have good self-renewal potential and ability to differentiate into neurons, astrocytes, and oligodendrocytes and improve the cellular microenvironment. NSC transplantation approaches have been made for various neurodegenerative disorders based on their regenerative potential. This review summarizes and discusses the characteristics of NSCs, and the advantages and effects of NSCs in the treatment of brain diseases and limitations of NSC transplantation that need to be addressed for the treatment of brain diseases in the future.  相似文献   

12.
脑病相关神经节苷脂研究进展   总被引:1,自引:0,他引:1  
神经节苷脂是一种糖链结构上包含有唾液酸的酸性鞘糖脂,是动物细胞膜的重要组成成分,并在细胞膜表面上参与各种重要的生物学进程.正常生理情况下,脑内的神经节苷脂在神经细胞的形态稳定和神经信号的传递等生物进程中发挥至关重要的作用,这些生物进程和大脑的生长发育与认知发展密切相关.在一些患者各脑区检测到的神经节苷脂含量与种类的明显改变,提示着不同脑部疾病的发生与发展,例如在一些脱髓鞘疾病患者脑内常常伴随有神经节苷脂减少的现象.此外,定位于胞膜上的神经节苷脂还能极大地影响阿尔茨海默病等神经退行性疾病和胶质瘤等脑部肿瘤的发生和发展.以上所述的种种病症看似发病机制相去甚远,但这些脑病之间却因为神经节苷脂的联系而具有一定的共性和发病模式,例如在数年前流行于南美的寨卡病毒与常见的神经脱髓鞘疾病格林-巴利综合症均是由于自身B细胞产生的抗GQ1b神经节苷脂抗体与脑内神经细胞膜表面GQ1b的结合所引起的.本文就脑内数种疾病涉及神经节苷脂的发病机制进行总结并概括了几种可能的共同发病模式,以期未来在脑内疾病的诊断和治疗中提供一个新的思路.  相似文献   

13.
Prions and their lethal journey to the brain   总被引:9,自引:0,他引:9  
Prion diseases are neurodegenerative conditions that cause extensive damage to nerve cells within the brain and can be fatal. Some prion disease agents accumulate first in lymphoid tissues, as they make their journey from the site of infection, such as the gut, to the brain. Studies in mouse models have shown that this accumulation is obligatory for the efficient delivery of prions to the brain. Indeed, if the accumulation of prions in lymphoid tissues is blocked, disease susceptibility is reduced. Therefore, the identification of the cells and molecules that are involved in the delivery of prions to the brain might identify targets for therapeutic intervention. This review describes the current understanding of the mechanisms involved in the delivery of prions to the brain.  相似文献   

14.
Progressively loss of neural and glial cells is the key event that leads to nervous system dysfunctions and diseases. Several neurodegenerative diseases, for instance Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, are associated to aging and suggested to be a consequence of deficiency of neural stem cell pool in the affected brain regions. Endogenous neural stem cells exist throughout life and are found inspecific niches of human brain. These neural stem cells are responsible for the regeneration of new neurons to restore, in the normal circumstance, the functions of the brain. Endogenous neural stem cells can be isolated, propagated, and, notably, differentiated to most cell types of the brain. On the other hand, other types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells can also serve as a source for neural stem cell production, that hold a great promise for regeneration of the brain. The replacement of neural stem cells, either endogenous or stem cell-derived neural stem cells, into impaired brain is highly expected as a possible therapeutic mean for neurodegenerative diseases. In this review, clinical features and current routinely treatments of agerelated neurodegenerative diseases are documented. Noteworthy, we presented the promising evidence of neural stem cells and their derivatives in curing such diseases, together with the remaining challenges to achieve the best outcome for patients.  相似文献   

15.
Alzheimer's disease and Parkinson's disease are the most common neurodegenerative diseases. They are characterized by the degeneration of selected populations of nerve cells that develop filamentous inclusions before degeneration. The neuronal inclusions of Alzheimer's disease are made of the microtubule-associated protein tau, in a hyperphosphorylated state. Recent work has shown that the filamentous inclusions of Parkinson's disease are made of the protein alpha-synuclein and that rare, familial forms of Parkinson's disease are caused by missense mutations in the alpha-synuclein gene. Besides Parkinson's disease, the filamentous inclusions of two additional neurodegenerative diseases, namely dementia with Lewy bodies and multiple system atrophy, have also been found to be made of alpha-synuclein. Abundant filamentous tau inclusions are not limited to Alzheimer's disease. They are the defining neuropathological characteristic of frontotemporal dementias such as Pick's disease, and of progressive supranuclear palsy and corticobasal degeneration. The recent discovery of mutations in the tau gene in familial forms of frontotemporal dementia has provided a direct link between tau dysfunction and dementing disease. The new work has established that tauopathies and alpha-synucleinopathies account for most late-onset neurodegenerative diseases in man. The formation of intracellular filamentous inclusions might be the gain of toxic function that leads to the demise of affected brain cells.  相似文献   

16.
肠道微生物是人体中最为庞大和复杂的微生物群落,其对机体的健康,尤其是中枢神经退行性病变具有重要调节作用。其中,"肠道微生物-肠道-脑轴"机制是肠道微生物干预中枢神经退行性病变的重要途径。该机制主要通过以下三种方式来调节大脑功能:一是肠道微生物直接产生神经递质通过肠神经细胞上行至中枢神经系统;二是肠道微生物代谢产物刺激肠内分泌细胞产生神经肽类和胃肠激素类物质,影响大脑功能;三是肠道微生物或其代谢产物直接刺激肠道免疫系统,产生干扰素类物质干扰大脑免疫反应。本文对"肠道微生物-肠道-脑轴"机制的概念及研究进展进行了详细的介绍,同时总结了有关肠道微生物与阿尔兹海默症、帕金森症和多发性硬化症等神经退行性疾病相互作用的相关文献。依据"肠道微生物-肠道-脑轴"机制,利用肠道微生物预防和治疗神经退行性病变,或将成为解决中枢神经系统疾病的新措施。  相似文献   

17.
Glucagon-like peptide-1 (GLP-1) is a glucoincretin hormone most intensively studied for its actions on insulin secreting β-cells. GLP-1 and its receptor are also found in brain and accumulating evidence indicates that GLP-1 has neuroprotective actions. Here, we investigated whether GLP-1 protects neuronal cells from death evoked by nerve growth factor (NGF) withdrawal. Compromised trophic factor signaling may underlie neurodegenerative diseases ranging from Alzheimer disease to diabetic neuropathies. We report that GLP-1 provides sustained protection of cultured neuronal PC12 cells and sympathetic neurons from degeneration and death caused by NGF deprivation. Past work shows that NGF deprivation induces the pro-apoptotic protein Bim which contributes to neuron death. Here, we find that GLP-1 suppresses Bim induction promoted by NGF deprivation. Thus, GLP-1 may protect neurons, at least in part, by suppressing Bim induction. Our findings support the idea that drugs that mimic or elevate GLP-1 represent potential therapeutics for neurodegenerative diseases.  相似文献   

18.
Neurodegenerative human diseases are caused by nerve cell death and anatomical changes in some brain regions. Molecular genetic studies of Drosophila showed that this organism can serve as a valuable test-system for conserved mechanisms underlying human nervous system disorders. Analysis of brain functions is possible when the mutants with disturbed functions are available. In this study, we have developed a unique collection of Drosophila melanogaster mutants with morphological and neurodegenerative changes in brain structure, which were induced by chemical mutagens.  相似文献   

19.
Neuroglial cells are fundamental for control of brain homeostasis and synaptic plasticity. Decades of pathological and physiological studies have focused on neurons in neurodegenerative disorders, but it is becoming increasingly evident that glial cells play an irreplaceable part in brain homeostasis and synaptic plasticity. Animal models of brain injury and neurodegenerative diseases have largely contributed to current understanding of astrocyte-specific mechanisms participating in brain function and neurodegeneration. Specifically, gliotransmission (presence of glial neurotransmitters, and their receptors and active transporters), trophic support (release, maturation and degradation of neurotrophins) and metabolism (production of lactate and GSH components) are relevant aspects of astrocyte function in neuronal metabolism, synaptic plasticity and neuroprotection. Morpho-functional changes of astrocytes and microglial cells after traumatic or toxic insults to the central nervous system (namely, reactive gliosis) disrupt the complex neuro-glial networks underlying homeostasis and connectivity within brain circuits. Thus, neurodegenerative diseases might be primarily regarded as gliodegenerative processes, in which profound alterations of glial activation have a clear impact on progression and outcomes of neuropathological processes. This review provides an overview of current knowledge of astrocyte functions in the brain and how targeting glial-specific pathways might ultimately impact the development of therapies for clinical management of neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号