首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
神经起步点自发放电节律及节律转化的分岔规律   总被引:2,自引:1,他引:1  
在神经起步点的实验中观察到了复杂多样的神经放电([Ca^2 ]o)节律模式,如周期簇放电、周期峰放电、混沌簇放电、混沌峰放电以及随机放电节律等。随着细胞外钙离子浓度的降低,神经放电节律从周期l簇放电,经过复杂的分岔过程(包括经倍周期分岔到混沌簇放电、混沌簇放电经激变到混沌峰放电、以及混沌峰放电经逆倍周期分岔到周期峰放电)转化为周期l峰放电。在神经放电理论模型——Chay模型中,调节与实验相关的参数(Ca^2 平衡电位),可以获得与实验相似的神经放电节律和节律转换规律。这表明复杂的神经放电节律之间存在着一定的分岔规律,它们是理解神经元信息编码的基础。  相似文献   

2.
含快慢子系统的神经元数学模型仿真预期,神经放电节律经历加周期分岔序列,可以进一步表现激变,并通过逆倍周期分岔级联进入周期1峰放电。实验调节胞外钙离子浓度,观察到从周期1簇放电开始的带有随机节律的加周期分岔到簇内有多个峰的簇放电,再经激变转迁到峰放电节律的分岔序列,提供了这种分岔序列模式实验证据。实验所见之激变表现为簇放电节律的休止期消失,放电节律变为混沌峰放电和周期峰放电。作者利用随机Chay模型更加逼真地仿真再现了实验所见的分岔序列。该实验结果验证了以前的确定性数学模型的理论预期,并利用随机理论模型仿真了其在现实神经系统的表现;揭示了一类完整的神经放电节律的转换规律。  相似文献   

3.
实验性神经起步点自发放电的分叉和整数倍节律   总被引:9,自引:8,他引:1  
在实验性神经起步点发现了放电峰峰间期序列随细胞外[Ca^2 ]变化产生的加周期分叉和整数倍节律。并用确定性Chay模型和随机Chay模型进行数值模拟。从模拟实验结果的角度看,加周期分叉过程遵从Chay模型决定的确定性机制,随机因素对其有影响但影响较小;而在相应的参数区间,整数倍节律则是在随机因素驱动下产生,是随机共振现象,是由确定性机制和随机因素共同作用的结果。这表明,实验性神经起步点放电节律的分叉和随机共振现象的出现是必然的,受确定性机制和随机因素共同影响。但在不同参数区间,随机因素对神经放电节律的作用不同。  相似文献   

4.
One- and two-dimensional bifurcation studies of a prototypic model of bursting oscillations in pancreatic beta-cells reveal a squid-formed area of chaotic dynamics in the parameter plane, with period-doubling bifurcations on one side of the arms and saddle-node bifurcations on the other. The transition from this structure to the so-called period-adding structure is found to involve a subcritical period-doubling bifurcation and the emergence of type-III intermittency. The period-adding transition itself is not smooth but consists of a saddle-node bifurcation in which (n+1)-spike bursting behavior is born, slightly overlapping with a subcritical period-doubling bifurcation in which n-spike bursting behavior loses its stability.  相似文献   

5.
Period-doubling bifurcation to chaos were discovered in spontaneous firings of Onchidium pacemaker neurons. In this paper, we provide three cases of bifurcation processes related to period-doubling bifurcation cascades to chaos observed in the spontaneous firing patterns recorded from an injured site of rat sciatic nerve as a pacemaker. Period-doubling bifurcation cascades to period-4 (π(2,2)) firstly, and then to chaos, at last to a periodicity, which can be period-5, period-4 (π(4)) and period-3, respectively, in different pacemakers. The three bifurcation processes are labeled as case I, II and III, respectively, manifesting procedures different to those of period-adding bifurcation. Higher-dimensional unstable periodic orbits (UPOs) can be detected in the chaos, built close relationships to the periodic firing patterns. Case III bifurcation process is similar to that discovered in the Onchidium pacemaker neurons and simulated in theoretical model-Chay model. The extra-large Feigenbaum constant manifesting in the period-doubling bifurcation process, induced by quasi-discontinuous characteristics exhibited in the first return maps of both ISI series and slow variable of Chay model, shows that higher-dimensional periodic behaviors appeared difficult within the period-doubling bifurcation cascades. The results not only provide examples of period-doubling bifurcation to chaos and chaos with higher-dimensional UPOs, but also reveal the dynamical features of the period-doubling bifurcation cascades to chaos.  相似文献   

6.

Background

Multistability of oscillatory and silent regimes is a ubiquitous phenomenon exhibited by excitable systems such as neurons and cardiac cells. Multistability can play functional roles in short-term memory and maintaining posture. It seems to pose an evolutionary advantage for neurons which are part of multifunctional Central Pattern Generators to possess multistability. The mechanisms supporting multistability of bursting regimes are not well understood or classified.

Methodology/Principal Findings

Our study is focused on determining the bio-physical mechanisms underlying different types of co-existence of the oscillatory and silent regimes observed in a neuronal model. We develop a low-dimensional model typifying the dynamics of a single leech heart interneuron. We carry out a bifurcation analysis of the model and show that it possesses six different types of multistability of dynamical regimes. These types are the co-existence of 1) bursting and silence, 2) tonic spiking and silence, 3) tonic spiking and subthreshold oscillations, 4) bursting and subthreshold oscillations, 5) bursting, subthreshold oscillations and silence, and 6) bursting and tonic spiking. These first five types of multistability occur due to the presence of a separating regime that is either a saddle periodic orbit or a saddle equilibrium. We found that the parameter range wherein multistability is observed is limited by the parameter values at which the separating regimes emerge and terminate.

Conclusions

We developed a neuronal model which exhibits a rich variety of different types of multistability. We described a novel mechanism supporting the bistability of bursting and silence. This neuronal model provides a unique opportunity to study the dynamics of networks with neurons possessing different types of multistability.  相似文献   

7.
Based on bifurcation analysis, the synchronization behaviors of two identical pancreatic β-cells connected by electrical and chemical coupling are investigated, respectively. Various firing patterns are produced in coupled cells when a single cell exhibits tonic spiking or square-wave bursting individually, irrespectively of what the cells are connected by electrical or chemical coupling. On the one hand, cells can burst synchronously for both weak electrical and chemical coupling when an isolated cell exhibits tonic spiking itself. In particular, for electrically coupled cells, under the variation of the coupling strength there exist complex transition processes of synchronous firing patterns such as “fold/limit cycle” type of bursting, then anti-phase continuous spiking, followed by the “fold/torus” type of bursting, and finally in-phase tonic spiking. On the other hand, it is shown that when the individual cell exhibits square-wave bursting, suitable coupling strength can make the electrically coupled system generate “fold/Hopf” bursting via “fold/fold” hysteresis loop; whereas, the chemically coupled cells generate “fold/subHopf” bursting. Especially, chemically coupled bursters can exhibit inverse period-adding bursting sequence. Fast–slow dynamics analysis is applied to explore the generation mechanism of these bursting oscillations. The above analysis of bursting types and the transition may provide us with better insight into understanding the role of coupling in the dynamic behaviors of pancreatic β-cells.  相似文献   

8.
Bursting, beating, and chaos in an excitable membrane model.   总被引:8,自引:2,他引:6  
We have studied periodic as well as aperiodic behavior in the self-sustained oscillations exhibited by the Hodgkin-Huxley type model of Chay, T. R., and J. Keizer (Biophys. J., 1983, 42:181-190) for the pancreatic beta-cell. Numerical solutions reveal a variety of patterns as the glucose-dependent parameter kCa is varied. These include regimes of periodic beating (continuous spiking) and bursting modes and, in the transition between these modes, aperiodic responses. Such aperiodic behavior for a nonrandom system has been called deterministic chaos and is characterized by distinguishing features found in previous studies of chaos in nonbiophysical systems and here identified for an (endogenously active) excitable membrane model. To parallel the successful analysis of chaos in other physical/chemical contexts we introduce a simplified, but quantitative, one-variable, discrete-time representation of the dynamics. It describes the evolution of intracellular calcium (which activates a potassium conductance) from one spike upstroke to the next and exhibits the various modes of behavior.  相似文献   

9.
We investigate the various types of complex Ca2+ oscillations which can arise in a model based on the mechanism of Ca2+-induced Ca2+ release (CICR), that takes into account the Ca2+-stimulated degradation of inositol 1,4,5-trisphosphate (InsP3) by a 3-kinase. This model was previously proposed in the course of an investigation of plausible mechanisms capable of generating complex Ca2+ oscillations (Borghans et al., 1997). Besides simple periodic behavior, this model for cytosolic Ca2+ oscillations in nonexcitable cells shows complex oscillatory phenomena like bursting or chaos. We show that the model also admits a coexistence between two stable regimes of sustained oscillations (birhythmicity). The occurrence of these various modes of oscillatory behavior is analysed by means of bifurcation diagrams. Complex oscillations are characterized by means of Poincaré sections, power spectra and Lyapounov exponents. The results point to the role of self-modulation of the InsP3 signal by 3-kinase as a possible source for complex temporal patterns in Ca2+ signaling.  相似文献   

10.
We explore the effects of stochastic sodium (Na) channel activation on the variability and dynamics of spiking and bursting in a model neuron. The complete model segregates Hodgin-Huxley-type currents into two compartments, and undergoes applied current-dependent bifurcations between regimes of periodic bursting, chaotic bursting, and tonic spiking. Noise is added to simulate variable, finite sizes of the population of Na channels in the fast spiking compartment.During tonic firing, Na channel noise causes variability in interspike intervals (ISIs). The variance, as well as the sensitivity to noise, depend on the model's biophysical complexity. They are smallest in an isolated spiking compartment; increase significantly upon coupling to a passive compartment; and increase again when the second compartment also includes slow-acting currents. In this full model, sufficient noise can convert tonic firing into bursting.During bursting, the actions of Na channel noise are state-dependent. The higher the noise level, the greater the jitter in spike timing within bursts. The noise makes the burst durations of periodic regimes variable, while decreasing burst length duration and variance in a chaotic regime. Na channel noise blurs the sharp transitions of spike time and burst length seen at the bifurcations of the noise-free model. Close to such a bifurcation, the burst behaviors of previously periodic and chaotic regimes become essentially indistinguishable.We discuss biophysical mechanisms, dynamical interpretations and physiological implications. We suggest that noise associated with finite populations of Na channels could evoke very different effects on the intrinsic variability of spiking and bursting discharges, depending on a biological neuron's complexity and applied current-dependent state. We find that simulated channel noise in the model neuron qualitatively replicates the observed variability in burst length and interburst interval in an isolated biological bursting neuron.  相似文献   

11.
We combine bifurcation analysis with the theory of canard-induced mixed mode oscillations to investigate the dynamics of a novel form of bursting. This bursting oscillation, which arises from a model of the electrical activity of a pituitary cell, is characterized by small impulses or spikes riding on top of an elevated voltage plateau. Oscillations with these characteristics have been called “pseudo-plateau bursting”. Unlike standard bursting, the subsystem of fast variables does not possess a stable branch of periodic spiking solutions, and in the case studied here the standard fast/slow analysis provides little information about the underlying dynamics. We demonstrate that the bursting is actually a canard-induced mixed mode oscillation, and use canard theory to characterize the dynamics of the oscillation. We also use bifurcation analysis of the full system of equations to extend the results of the singular analysis to the physiological regime. This demonstrates that the combination of these two analysis techniques can be a powerful tool for understanding the pseudo-plateau bursting oscillations that arise in electrically excitable pituitary cells and isolated pancreatic β-cells.  相似文献   

12.
An unnoticed chaotic firing pattern, lying between period-1 and period-2 firing patterns, has received little attention over the past 20 years since it was first simulated in the Hindmarsh-Rose (HR) model. In the present study, the rat sciatic nerve model of chronic constriction injury (CCI) was used as an experimental neural pacemaker to investigate the transition regularities of spontaneous firing patterns. Chaotic firing lying between period-1 and period-2 firings was observed located in four bifurcation scenarios in different, isolated neural pacemakers. These bifurcation scenarios were induced by decreasing extracellular calcium concentrations. The behaviors after period-2 firing pattern in the four scenarios were period-doubling bifurcation not to chaos, period-doubling bifurcation to chaos, period-adding sequences with chaotic firings, and period-adding sequences with stochastic firings. The deterministic structure of the chaotic firing pattern was identified by the first return map of interspike intervals and a short-term prediction using nonlinear prediction. The experimental observations closely match those simulated in a two-dimensional parameter space using the HR model, providing strong evidences of the existence of chaotic firing lying between period-1 and period-2 firing patterns in the actual nervous system. The results also present relationships in the parameter space between this chaotic firing and other firing patterns, such as the chaotic firings that appear after period-2 firing pattern located within the well-known comb-shaped region, periodic firing patterns and stochastic firing patterns, as predicted by the HR model. We hope that this study can focus attention on and help to further the understanding of the unnoticed chaotic neural firing pattern.  相似文献   

13.
 It is shown in this paper that electrical bursting and the oscillations in the intracellular calcium concentration, [Ca2+]i, observed in excitable cells such as pancreatic β-cells and R-15 cells of the mollusk Aplysia may be driven by a slow oscillation of the calcium concentration in the lumen of the endoplasmic reticulum, [Ca2+]lum. This hypothesis follows from the inclusion of the dynamic changes of [Ca2+]lum in the Chay bursting model. This extended model provides answers to some puzzling phenomena, such as why isolated single pancreatic β-cells burst with a low frequency while intact β-cells in an islet burst with a much higher frequency. Verification of the model prediction that [Ca2+]lum is a primary oscillator which drives electrical bursting and [Ca2+]i oscillations in these cells awaits experimental testing. Experiments using fluorescent dyes such as mag-fura-2-AM or aequorin could provide relevant information. Received: 17 August 1995/Accepted in revised form: 10 July 1996  相似文献   

14.
The paper treats some nonlinear dynamic phenomena in oscillatory activity of a single nerve cell. Based on experiments with CNS bursting pacemaker neurons ofHelix pomatia snail, a mathematical model was studied. The model demonstrates the majority of experimentally observable phenomena and allows one to investigate the role of its separate components. The phenomena demonstrated by model neuron (chaotic behavior, bistability, and sensitivity to parameter variations, initial conditions, and stimuli) may be relevant to information processing in nerve cells. The complexity of [Ca2+] in V phase diagrams of initial conditions depends on parameters. Transient synaptic impulse produces stable parameter-independent changes in activity of model neuron. These results indicate that a single bursting neuron can work in the neuronal ensemble as a dynamic switch. The sensitivity of this switch is regulated by a neurotransmitter.  相似文献   

15.
We are interested in characterization of synchronization transitions of bursting neurons in the frequency domain. Instantaneous population firing rate (IPFR) R(t), which is directly obtained from the raster plot of neural spikes, is often used as a realistic collective quantity describing population activities in both the computational and the experimental neuroscience. For the case of spiking neurons, a realistic time-domain order parameter, based on R(t), was introduced in our recent work to characterize the spike synchronization transition. Unlike the case of spiking neurons, the IPFR R(t) of bursting neurons exhibits population behaviors with both the slow bursting and the fast spiking timescales. For our aim, we decompose the IPFR R(t) into the instantaneous population bursting rate Rb(t) (describing the bursting behavior) and the instantaneous population spike rate Rs(t) (describing the spiking behavior) via frequency filtering, and extend the realistic order parameter to the case of bursting neurons. Thus, we develop the frequency-domain bursting and spiking order parameters which are just the bursting and spiking “coherence factors” βb and βs of the bursting and spiking peaks in the power spectral densities of Rb and Rs (i.e., “signal to noise” ratio of the spectral peak height and its relative width). Through calculation of βb and βs, we obtain the bursting and spiking thresholds beyond which the burst and spike synchronizations break up, respectively. Consequently, it is shown in explicit examples that the frequency-domain bursting and spiking order parameters may be usefully used for characterization of the bursting and the spiking transitions, respectively.  相似文献   

16.
A computationally efficient, biophysically-based model of neuronal behavior is presented; it incorporates ion channel dynamics in its two fast ion channels while preserving simplicity by representing only one slow ion current. The model equations are shown to provide a wide array of physiological dynamics in terms of spiking patterns, bursting, subthreshold oscillations, and chaotic firing. Despite its simplicity, the model is capable of simulating an extensive range of spiking patterns. Several common neuronal behaviors observed in vivo are demonstrated by varying model parameters. These behaviors are classified into dynamical classes using phase diagrams whose boundaries in parameter space prove to be accurately delineated by linear stability analysis. This simple model is suitable for use in large scale simulations involving neural field theory or neuronal networks.  相似文献   

17.
Complex anatomical and physiological structure of an excitable tissue (e.g., cardiac tissue) in the body can represent different electrical activities through normal or abnormal behavior. Abnormalities of the excitable tissue coming from different biological reasons can lead to formation of some defects. Such defects can cause some successive waves that may end up to some additional reorganizing beating behaviors like spiral waves or target waves. In this study, formation of defects and the resulting emitted waves in an excitable tissue are investigated. We have considered a square array network of neurons with nearest-neighbor connections to describe the excitable tissue. Fundamentally, electrophysiological properties of ion currents in the body are responsible for exhibition of electrical spatiotemporal patterns. More precisely, fluctuation of accumulated ions inside and outside of cell causes variable electrical and magnetic field. Considering undeniable mutual effects of electrical field and magnetic field, we have proposed the new Hindmarsh–Rose (HR) neuronal model for the local dynamics of each individual neuron in the network. In this new neuronal model, the influence of magnetic flow on membrane potential is defined. This improved model holds more bifurcation parameters. Moreover, the dynamical behavior of the tissue is investigated in different states of quiescent, spiking, bursting and even chaotic state. The resulting spatiotemporal patterns are represented and the time series of some sampled neurons are displayed, as well.  相似文献   

18.
The numerical study of a glycolytic model formed by a system of three delay differential equations reveals a multiplicity of stable coexisting states: birhythmicity, trirhythmicity, hard excitation and quasiperiodic with chaotic regimes. For different initial functions in the phase space one may observe the coexistence of two different quasiperiodic motions, the existence of a stable steady state with a stable torus, and the existence of a strange attractor with different stable regimes (chaos with torus, chaos with bursting motion, and chaos with different periodic regimes). For a single range of the control parameter values our system may exhibit different bifurcation diagrams: in one case a Feigenbaum route to chaos coexists with a finite number of successive periodic bifurcations, in other conditions it is possible to observe the coexistence of two quasiperiodicity routes to chaos. These studies were obtained both at constant input flux and under forcing conditions.  相似文献   

19.
 Dendritic spines are the major target for excitatory synaptic inputs in the vertebrate brain. They are tiny evaginations of the dendritic surface consisting of a bulbous head and a tenuous stem. Spines are considered to be an important locus for plastic changes underlying memory and learning processes. The findings that synaptic morphology may be activity-dependent and that spine head membrane may be endowed with voltage-dependent (excitable) channels is the motivation for this study. We first explore the dynamics, when an excitable, yet morphologically fixed spine receives a constant current input. Two parameter Andronov–Hopf bifurcation diagrams are constructed showing stability boundaries between oscillations and steady-states. We show how these boundaries can change as a function of both the spine stem conductance and the conductance load of the attached dendrite. Building on this reference case an idealized model for an activity-dependent spine is formulated and analyzed. Specifically we examine the possibility that the spine stem resistance, the tunable “synaptic weight” parameter identified by Rall and Rinzel, is activity-dependent. In the model the spine stem conductance depends (slowly) on the local electrical interactions between the spine head and the dendritic cable; parameter regimes are found for bursting, steady states, continuous spiking, and more complex oscillatory behavior. We find that conductance load of the dendrite strongly influences the burst pattern as well as other dynamics. When the spine head membrane potential exhibits relaxation oscillations a simple model is formulated that captures the dynamical features of the full model. Received: 10 January 1997/Revised version: 25 March 1997  相似文献   

20.
The leech neuron model studied here has a remarkable dynamical plasticity. It exhibits a wide range of activities including various types of tonic spiking and bursting. In this study we apply methods of the qualitative theory of dynamical systems and the bifurcation theory to analyze the dynamics of the leech neuron model with emphasis on tonic spiking regimes. We show that the model can demonstrate bi-stability, such that two modes of tonic spiking coexist. Under a certain parameter regime, both tonic spiking modes are represented by the periodic attractors. As a bifurcation parameter is varied, one of the attractors becomes chaotic through a cascade of period-doubling bifurcations, while the other remains periodic. Thus, the system can demonstrate co-existence of a periodic tonic spiking with either periodic or chaotic tonic spiking. Pontryagins averaging technique is used to locate the periodic orbits in the phase space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号