首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exosomes are secreted vesicles of endosomal origin involved in signaling processes. We recently showed that the syndecan heparan sulfate proteoglycans control the biogenesis of exosomes through their interaction with syntenin-1 and the endosomal-sorting complex required for transport accessory component ALIX. Here we investigated the role of heparanase, the only mammalian enzyme able to cleave heparan sulfate internally, in the syndecan-syntenin-ALIX exosome biogenesis pathway. We show that heparanase stimulates the exosomal secretion of syntenin-1, syndecan and certain other exosomal cargo, such as CD63, in a concentration-dependent manner. In contrast, exosomal CD9, CD81 and flotillin-1 are not affected. Conversely, reduction of endogenous heparanase reduces the secretion of syntenin-1-containing exosomes. The ability of heparanase to stimulate exosome production depends on syntenin-1 and ALIX. Syndecans, but not glypicans, support exosome biogenesis in heparanase-exposed cells. Finally, heparanase stimulates intraluminal budding of syndecan and syntenin-1 in endosomes, depending on the syntenin-ALIX interaction. Taken together, our findings identify heparanase as a modulator of the syndecan-syntenin-ALIX pathway, fostering endosomal membrane budding and the biogenesis of exosomes by trimming the heparan sulfate chains on syndecans. In addition, our data suggest that this mechanism controls the selection of specific cargo to exosomes.  相似文献   

2.
It has recently been established that exosomes can mediate intercellular cross-talk under normal and pathological conditions through the transfer of specific miRNAs. As muscle cells secrete exosomes, we addressed the question of whether skeletal muscle (SkM) exosomes contained specific miRNAs, and whether they could act as “endocrine signals” during myogenesis. We compared the miRNA repertoires found in exosomes released from C2C12 myoblasts and myotubes and found that 171 and 182 miRNAs were exported into exosomes from myoblasts and myotubes, respectively. Interestingly, some miRNAs were expressed at higher levels in exosomes than in their donor cells and vice versa, indicating a selectivity in the incorporation of miRNAs into exosomes. Moreover miRNAs from C2C12 exosomes were regulated during myogenesis. The predicted target genes of regulated exosomal miRNAs are mainly involved in the control of important signaling pathways for muscle cell differentiation (e.g., Wnt signaling pathway). We demonstrated that exosomes from myotubes can transfer small RNAs (C. elegans miRNAs and siRNA) into myoblasts. Moreover, we present evidence that exosome miRNAs secreted by myotubes are functionally able to silence Sirt1 in myoblasts. As Sirt1 regulates muscle gene expression and differentiation, our results show that myotube–exosome miRNAs could contribute to the commitment of myoblasts in the process of differentiation. Until now, myokines in muscle cell secretome provided a conceptual basis for communication between muscles. Here, we show that miRNA exosomal transfer would be a powerful means by which gene expression is orchestrated to regulate SkM metabolic homeostasis.  相似文献   

3.
Exosomes are nanovesicles, derived from the endocytic pathway, released by most cell types and found in many body fluids, including urine. A variety of exosomal functions have been reported, including transfer of RNA, cell communication, control of apoptosis and protein lifespan. Exosomes from mesenchymal stem cells can rescue bioenergetics of injured cells. Here the urinary exosome proteome, non-urinary exosome proteome and urinome are compared. A consistent number of identified proteins cluster to metabolic functions. Cytoscape software analysis based on biological processes gene ontology database shows that metabolic pathways such as aerobic glycolysis and oxidative phosphorylation have a high probability (p ≤ 0.05) of being expressed and therefore functional. A metabolic function appears to be associated with human urinary exosomes, whose relevance experimental studies can assess.  相似文献   

4.
Exosomes are membranous vesicles containing various biomolecules, including non-coding RNAs (ncRNAs). ncRNAs are secreted from several cell types and are involved in various biological functions, including cellular communication. The aim of this study was to identify and illustrate the significance of the osteoarthritis (OA)-specific packaging of exosomal ncRNAs. In this study, we hypothesized that selective packaging of ncRNAs into exosomes would reflect the cellular response to chondrocyte death during OA pathogenesis. Exosomal HULC level significantly decreased in OA exosomes, whereas exosomal miR-372-3p level significantly increased in OA exosomes. In addition, chondrocytes with high HULC levels in the cytosol showed lower overall proliferation and higher apoptotic cell death than normal chondrocytes, whereas chondrocytes with high miR-372-3p in the cytosol showed higher overall proliferation and lower cell death than OA chondrocytes. Among the signaling molecules known to be involved in OA pathogenesis, GSK is one of the regulators of the selective exosomal packaging observed in OA chondrocytes. Inhibition of GSK observed in OA chondrocytes was responsible for enriched uploading of miR-372-3p and suppressed uploading of HULC during OA pathogenesis. In conclusion, we show that selective ncRNAs observed in OA play a critical role in chondrocyte proliferation/apoptosis.  相似文献   

5.
ExoCarta: A compendium of exosomal proteins and RNA   总被引:1,自引:0,他引:1  
Exosomes, membrane microvesicles (40–100 nm) secreted by most cell types, can be isolated in several ways while characterizing them is heavily based on electron microscopy and, most importantly, the identification of exosome marker proteins. Researchers rely on the identification of certain exosomal marker proteins including Alix, CD9 and CD63 to confirm the presence of exosomes in their preparations. An evolutionary‐conserved set of protein molecules have been identified in most exosomes studied to date. However, with the complexity of tissue/cell type‐specific proteins being incorporated in the exosomes, some of these so‐called exosomal markers are not always present in all the exosomes. The presence of tissue/cell type‐specific proteins in exosomes allows researchers to isolate them using immunoaffinity capture methods. A compendium for exosomal proteomes will aid researchers in identifying proteins that were more commonly found in various exosomes (exosome markers) and those that are specific to certain tissue/cell type‐derived exosomes. Here, we describe ExoCarta, a compendium for proteins and RNA molecules identified in exosomes. ExoCarta is first of its kind and the resource is freely available to the scientific community through the web ( http://exocarta.ludwig.edu.au ). We believe that this community resource will be of great biological importance for any future exosome analyses.  相似文献   

6.
Exosomes are secreted, single membrane organelles of approximately 100 nm diameter. Their biogenesis is typically thought to occur in a two-step process involving (1) outward vesicle budding at limiting membranes of endosomes (outward = away from the cytoplasm), which generates intralumenal vesicles, followed by (2) endosome-plasma membrane fusion, which releases these internal vesicles into the extracellular milieu as exosomes. In this study, we present evidence that certain cells, including Jurkat T cells, possess discrete domains of plasma membrane that are enriched for exosomal and endosomal proteins, retain the endosomal property of outward vesicle budding, and serve as sites of immediate exosome biogenesis. It has been hypothesized that retroviruses utilize the exosome biogenesis pathway for the formation of infectious particles. In support of this, we find that Jurkat T cells direct the key budding factor of HIV, HIV Gag, to these endosome-like domains of plasma membrane and secrete HIV Gag from the cell in exosomes.  相似文献   

7.
外泌体是细胞分泌的30~150 nm的细胞外囊泡,在肿瘤微环境(tumor microenvironment,TME)中介导细胞间通讯.环状RNA(circular RNA,circRNAs)是一类由前体mRNA(precursor mRNA,pre-mRNA)反向剪接生成的非编码RNA(non-coding RNA,ncRNA),在外泌体中富集且表达稳定.本文主要讨论外泌体起源和circRNAs在外泌体中的分选调控机制,阐述外泌体circRNAs在肿瘤微环境各个阶段中的作用与机制,包括血管生成、EMT、耐药等.最后,本文探讨外泌体circRNAs作为肿瘤标志物和治疗靶点的临床应用前景与价值.  相似文献   

8.
Exosomes are small vesicles secreted from cells that transport their embedded molecules through bidirectional exocytosis‐ and endocytosis‐like pathways. Expression patterns of exosomal molecules such as proteins and RNAs can be indicative of cell type since their signature is thought to be unique among cells. Using human primary (AZ‐521) and metastatic (AZ‐P7a) duodenal cancer cell lines, we conducted a comparative exosomal proteome analysis to identify proteins with metastatic marker potential. As determined by LC‐MS/MS and Western blot analyses, polyadenylate‐binding protein 1 (PABP1) was found to be predominantly abundant in AZ‐P7a exosomes. The amount of exosomal PABP1 in AZ‐P7a cells increased by treating the cells with inhibitors for the classical ER/Golgi secretory pathway (brefeldin A and monensin) and the ubiquitin‐proteasome pathway (MG‐132 and PYR‐41). Treatment of AZ‐P7a cells with the neutral sphingomyelinase inhibitor GW4869, which suppresses exosome release, not only reduced the amount of exosomal PABP1 but also produced PABP1‐immunoreactive products cleaved via a proteolysis‐like process. Taken together, these results suggest that AZ‐P7a cells do not tolerate intracellular PABP1 accumulation and are thus exported into the extracellular milieu by the exosome‐mediated pathway. In addition, PABP1 has a potential use as a biomarker for metastatic duodenal cancer.  相似文献   

9.
Exosomes are discussed as potent therapeutics due to efficient transfer of proteins, mRNA and miRNA in selective targets. However, therapeutic exosome application requires knowledge on target structures to avoid undue delivery. Previous work suggesting exosomal tetraspanin-integrin complexes to be involved in target cell binding, we aimed to control this hypothesis and to define target cell ligands. Exosomes are rich in tetraspanins that associate besides other molecules with integrins. Co-immunoprecipitation of exosome lysates from rat tumor lines that differ only with respect to Tspan8 and beta4 revealed promiscuity of tetraspanin-integrin associations, but also few preferential interactions like that of Tspan8 with alpha4 and beta4 integrin chains. These minor differences in exosomal tetraspanin-complexes strongly influence target cell selection in vitro and in vivo, efficient exosome-uptake being seen in hematopoietic cells and solid organs. Exosomes expressing the Tspan8-alpha4 complex are most readily taken up by endothelial and pancreas cells, CD54 serving as a major ligand. Selectivity of uptake was confirmed with exosomes from an alpha4 cDNA transfected Tspan8(+) lymph node stroma line. Distinct from exosomes from the parental line, the latter preferentially targeted endothelial cells and in vivo the pancreas. Importantly, pulldown experiments provided strong evidence that exosome-uptake occurs in internalization-prone membrane domains. This is the first report on the exosomal tetraspanin web contributing to target cell selection such that predictions can be made on potential targets, which will facilitate tailoring exosomes for drug delivery.  相似文献   

10.
Exosomes are secreted organelles that have the same topology as the cell and bud outward (outward is defined as away from the cytoplasm) from endosome membranes or endosome-like domains of plasma membrane. Here we describe an exosomal protein-sorting pathway in Jurkat T cells that selects cargo proteins on the basis of both higher-order oligomerization (the oligomerization of oligomers) and plasma membrane association, acts on proteins seemingly without regard to their function, sequence, topology, or mechanism of membrane association, and appears to operate independently of class E vacuolar protein-sorting (VPS) function. We also show that higher-order oligomerization is sufficient to target plasma membrane proteins to HIV virus-like particles, that diverse Gag proteins possess exosomal-sorting information, and that higher-order oligomerization is a primary determinant of HIV Gag budding/exosomal sorting. In addition, we provide evidence that both the HIV late domain and class E VPS function promote HIV budding by unexpectedly complex, seemingly indirect mechanisms. These results support the hypothesis that HIV and other retroviruses are generated by a normal, nonviral pathway of exosome biogenesis.  相似文献   

11.
Exosomes are membrane vesicles secreted by hematopoietic cells upon fusion of late multivesicular endosomes with the plasma membrane. Dendritic cell (DC)-derived exosomes induce potent antitumor immune responses in mice, resulting in the regression of established tumors (Zitvogel, L., A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena. 1998. Nat. Med. 4:594-600). To unravel the molecular basis of exosome-induced immune stimulation, we now analyze the regulation of their production during DC maturation and characterize extensively their protein composition by peptide mass mapping. Exosomes contain several cytosolic proteins (including annexin II, heat shock cognate protein hsc73, and heteromeric G protein Gi2alpha), as well as different integral or peripherally associated membrane proteins (major histocompatibility complex class II, Mac-1 integrin, CD9, milk fat globule-EGF-factor VIII [MFG-E8]). MFG-E8, the major exosomal component, binds integrins expressed by DCs and macrophages, suggesting that it may be involved in exosome targeting to these professional antigen-presenting cells. Another exosome component is hsc73, a cytosolic heat shock protein (hsp) also present in DC endocytic compartments. hsc73 was shown to induce antitumor immune responses in vivo, and therefore could be involved in the exosome's potent antitumor effects. Finally, exosome production is downregulated upon DC maturation, indicating that in vivo, exosomes are produced by immature DCs in peripheral tissues. Thus, DC-derived exosomes accumulate a defined subset of cellular proteins reflecting their endosomal biogenesis and accounting for their biological function.  相似文献   

12.
外泌体(exosomes)是细胞分泌的囊泡,在细胞与细胞之间通信中发挥重要作用。由于其固有的长距离通信能力和出色的生物相容性而具有很大的潜力作为药物递送载体,尤其适合递送蛋白质、核酸、基因治疗剂等治疗药物。许多研究表明外泌体可以有效地将许多不同种类的货物递送至靶细胞,因此,它们常被作为药物载体用于治疗。对外泌体作为药物递送系统中面临的外泌体分离,药物装载和靶向治疗应用的进展与挑战作一介绍,以期更好为外泌体药物递送系统开发提供新思路。  相似文献   

13.
Exosomes are generated within the multivesicular endosomes (MVEs) as intraluminal vesicles (ILVs) and secreted during the fusion of MVEs with the cell membrane. The mechanisms of exosome biogenesis remain poorly explored. Here we identify that RAB31 marks and controls an ESCRT-independent exosome pathway. Active RAB31, phosphorylated by epidermal growth factor receptor (EGFR), engages flotillin proteins in lipid raft microdomains to drive EGFR entry into MVEs to form ILVs, which is independent of the ESCRT (endosomal sorting complex required for transport) machinery. Active RAB31 interacts with the SPFH domain and drives ILV formation via the Flotillin domain of flotillin proteins. Meanwhile, RAB31 recruits GTPase-activating protein TBC1D2B to inactivate RAB7, thereby preventing the fusion of MVEs with lysosomes and enabling the secretion of ILVs as exosomes. These findings establish that RAB31 has dual functions in the biogenesis of exosomes: driving ILVs formation and suppressing MVEs degradation, providing an exquisite framework to better understand exosome biogenesis.Subject terms: Small GTPases, Endosomes, Multivesicular bodies, Lysosomes, ESCRT  相似文献   

14.
15.
With advances in the fields of regenerative medicine, cell-free therapy has received increased attention. Exosomes have a variety of endogenous properties that provide stability for molecular transport across biological barriers to cells, as a form of cell-to-cell communication that regulates function and phenotype. In addition, exosomes are an important component of paracrine signaling in stem-cell-based therapy and can be used as a stand-alone therapy or as a drug delivery system. The remarkable potential of exosomes has paved the pathway for cell-free treatment in bone regeneration. Exosomes are enriched in distinct noncoding RNAs (ncRNAs), including microRNAs, long ncRNAs and circular RNAs. Different ncRNAs have multiple functions. Altered expression of ncRNA in exosomes is associated with the regenerative potential and development of various diseases, such as femoral head osteonecrosis, myocardial infarction, and cancer. Although there is increasing evidence that exosome-derived ncRNAs (exo-ncRNAs) have the potential for bone regeneration, the detailed mechanisms are not fully understood. Here, we review the biogenesis of exo-ncRNA and the effects of ncRNAs on angiogenesis and osteoblast- and osteoclast-related pathways in different diseases. However, there are still many unsolved problems and challenges in the clinical application of ncRNA; for instance, production, storage, targeted delivery and therapeutic potency assessment. Advancements in exo-ncRNA methods and design will promote the development of therapeutics, revolutionizing the present landscape.  相似文献   

16.
Liquid biopsies serve as both powerful noninvasive diagnostic tools for early cancer screening and prognostic tools for monitoring cancer progression and treatment efficacy. Exosomes are promising biomarkers for liquid biopsies, since these nano‐sized extracellular vesicles (EVs) enrich proteins, lipids, mRNAs, and miRNAs from cells of origin, including cancer cells. Although exosomes are abundantly present in various bodily fluids, conventional exosome isolation and detection methods that rely on benchtop equipment are time‐consuming, expensive, and involve complicated non‐portable procedures. As an alternative, recently developed microfluidic platforms can perform effective exosome separation and detection for liquid biopsies using a single device. Such methods offer advantages of integrity, speed, cost‐efficiency, and portability over conventional benchtop and early microfluidic‐based single‐functional methods which can only separate or detect exosomes separately. These advances have made exosome‐based point‐of‐care (POC) applications possible. This review outlines recent integrated microfluidic‐based exosomal detection strategies to guide future development of such devices for use in liquid biopsies for early cancer screening, prognostic monitoring, and other potential POC applications.  相似文献   

17.
Exosome function: from tumor immunology to pathogen biology   总被引:3,自引:0,他引:3  
Exosomes are the newest family member of 'bioactive vesicles' that function to promote intercellular communication. Exosomes are derived from the fusion of multivesicular bodies with the plasma membrane and extracellular release of the intraluminal vesicles. Recent studies have focused on the biogenesis and composition of exosomes as well as regulation of exosome release. Exosomes have been shown to be released by cells of hematopoietic and non-hematopoietic origin, yet their function remains enigmatic. Much of the prior work has focused on exosomes as a source of tumor antigens and in presentation of tumor antigens to T cells. However, new studies have shown that exosomes might also promote cell-to-cell spread of infectious agents. Moreover, exosomes isolated from cells infected with various intracellular pathogens, including Mycobacterium tuberculosis and Toxoplasma gondii , have been shown to contain microbial components and can promote antigen presentation and macrophage activation, suggesting that exosomes may function in immune surveillance. In this review, we summarize our understanding of exosome biogenesis but focus primarily on new insights into exosome function. We also discuss their possible use as disease biomarkers and vaccine candidates.  相似文献   

18.
Exosomes are small lipid bilayer-enclosed 30–140 nm diameter vesicles formed from endosomes. Exosomes are secreted by various cell types including endothelial cells, immune cells and other cardiovascular tissues, and they can be detected in plasma, urine, cerebrospinal fluid, as well as tissues. Exosomes were initially regarded as a disposal mechanism to discard unwanted materials from cells. Recent studies suggest that exosomes play an important role in mediating of intercellular communication through the delivery and transport of cellular components such as nucleic acids, lipids, and proteins and thus regulate cardiovascular disease. Further, the underlying mechanisms by which abnormally released exosomes promote cardiovascular disease are not well understood. This review highlights recent studies involving endothelial exosomes, gives a brief overview of exosome biogenesis and release, isolation and identification of exosomes, and provides a contemporary understanding of the endothelial exosome pathophysiology and potential therapeutic strategies.  相似文献   

19.
Exosomes are nanovesicles released by a variety of cells and are detected in body fluids including blood. Recent studies have highlighted the critical application of exosomes as personalized targeted drug delivery vehicles and as reservoirs of disease biomarkers. While these research applications have created significant interest and can be translated into practice, the stability of exosomes needs to be assessed and exosome isolation protocols from blood plasma need to be optimized. To optimize methods to isolate exosomes from blood plasma, we performed a comparative evaluation of three exosome isolation techniques (differential centrifugation coupled with ultracentrifugation, epithelial cell adhesion molecule immunoaffinity pull‐down, and OptiPrepTM density gradient separation) using normal human plasma. Based on MS, Western blotting and microscopy results, we found that the OptiPrepTM density gradient method was superior in isolating pure exosomal populations, devoid of highly abundant plasma proteins. In addition, we assessed the stability of exosomes in plasma over 90 days under various storage conditions. Western blotting analysis using the exosomal marker, TSG101, revealed that exosomes are stable for 90 days. Interestingly, in the context of cellular uptake, the isolated exosomes were able to fuse with target cells revealing that they were indeed biologically active.  相似文献   

20.
Exosomes are small vesicles that were initially thought to be a mechanism for discarding unneeded membrane proteins from reticulocytes. Their mediation of intercellular communication appears to be associated with several biological functions. Current studies have shown that most mammalian cells undergo the process of exosome formation and utilize exosome‐mediated cell communication. Exosomes contain various microRNAs, mRNAs and proteins. They have been reported to mediate multiple functions, such as antigen presentation, immune escape and tumour progression. This concise review highlights the findings regarding the roles of exosomes in liver diseases, particularly hepatitis B, hepatitis C, liver cirrhosis and hepatocellular carcinoma. However, further elucidation of the contributions of exosomes to intercellular information transmission is needed. The potential medical applications of exosomes in liver diseases seem practical and will depend on the ingenuity of future investigators and their insights into exosome‐mediated biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号