首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 371 毫秒
1.
We conducted this study to explore limitations for the establishment of mycorrhizal associations in disturbed areas of the tropical dry ecosystem in the Chamela region of Jalisco, Mexico. Specifically, we: (1) assessed the diversity and composition of arbuscular mycorrhizal fungal (AMF) communities through spore morphospecies identification in three common land uses (primary forest, secondary forest, and pasture), (2) tested the inoculum potential of the AMF communities and the effect of water stress on the establishment of mycorrhizal associations in seedlings of various plant species, and (3) explored the importance of AMF community composition on early seedling development. Soil and root samples were taken from 15 random points in each of three plots established in two primary forests, two 26-year-old secondary forests, and two 26-year-old pastures. We expected that because of soil degradation and management, pastures would have the lowest and primary forests the highest AMF species richness. We found evidence for changes in AMF species composition due to land use and for higher morphospecies richness in primary forests than in secondary forests and pastures. We expected also that water stress limited plant and mycorrhizal development and that plants and AMF communities from secondary forests and pastures would be less affected by (better adapted to) water stress than those from the primary forest. We found that although all plant species showed biomass reductions under water stress, only some of the plant species had lower mycorrhizal development under water stress, and this was regardless of the AMF community inoculated. The third hypothesis was that plant species common to all land use types would respond similarly to all AMF communities, whereas plant species found mainly in one land use type would grow better when inoculated with the AMF community of that specific land use type. All plant species were however equally responsive to the three AMF communities inoculated, indicating that all plants established functionally compatible AMF in each community, with no preferences. The results suggest that early seedling growth and mycorrhizal development in secondary forests and pastures is not likely limited by diversity, quantity, or quality of mycorrhizal propagules but by the high temperature and water stress conditions prevailing at those sites.  相似文献   

2.
Specimens of Araucaria angustifolia from a native forest reserve and a reforested area in the State Park of Campos do Jordão were studied to determine the number and diversity of spore populations of arbuscular mycorrhizal fungi (AMF) and root colonization. Six randomly chosen plots (planted with 8- to 12-year-old plants) were delimited, four in the native forest and two in the reforested area. Rhizosphere and root samples were collected during two periods of the year corresponding to the rainy and dry seasons. A greenhouse experiment was set up for multiplication of field propagules (from the native forest and reforested area) for two consecutive generations. Araucaria leaves from the experimental plots were collected during the first sampling for nutrient analysis. Twenty-four AMF taxa were found and percent AM colonization was determined in all plots. Not all AMF species observed in the field were re-isolated through the recovery pot cultures, even after a second cultivation cycle. The foliar nutrient analysis showed higher nutrient levels in plants from the native forest than the reforested area. Generally, spore richness and diversity were highest during the warmer and more humid period and in the native forest plants.  相似文献   

3.
Arbuscular mycorrhizal fungi (AMF) were surveyed for species richness and abundance in sporulation in six distinct land uses in the western Amazon region of Brazil. Areas included mature pristine forest and sites converted to pasture, crops, agroforestry, young and old secondary forest. A total of 61 AMF morphotypes were recovered and 30% of them could not be identified to known species. Fungal communities were dominated by Glomus species but Acaulospora species produced the most abundant sporulation. Acaulospora gedanensis cf., Acaulospora foveata, Acaulospora spinosa, Acaulospora tuberculata, Glomus corymbiforme, Glomus sp15, Scutellospora pellucida, and Archaeospora trappei sporulated in all land use areas. Total spore numbers were highly variable among land uses. Mean species richness in crop, agroforestry, young and old secondary forest sites was twice that in pristine forest and pasture. fungal communities were dominated in all land use areas except young secondary forest by two or three species which accounted for 48% to 63% of all sporulation. Land uses influenced AMF community in (1) frequency of occurrence of sporulating AMF species, (2) mean species diversity, and (3) relative spore abundance. Conversion of pristine forest into distinct land uses does not appear to reduce AMF diversity. Cultural practices adopted in this region maintain a high diversity of arbuscular mycorrhizal fungi.  相似文献   

4.
Plant cover loss due to changes in land use promotes a decrease in spore diversity of arbuscular mycorrhizal fungi (AMF), viable mycelium and, therefore, in AMF colonization, this has an influence in community diversity and, as a consequence, in its recovery. To evaluate different AMF propagules, nine plots in a tropical dry forest with secondary vegetation were selected: 0, 1, 7, 10, 14, 18, 22, 25, and 27 years after abandonment in Nizanda, Oaxaca, Mexico. The secondary vegetation with different stages of development is a consequence of slash and burn agriculture, and posterior abandonment. Soil samples (six per plot) were collected and percentage of AMF field colonization, extrarradical mycelium, viable spore density, infectivity and most probable number (MPN) ofAMF propagules were quantified through a bioassay. Means for field colonization ranged between 40% and 70%, mean of total mycelium length was 15.7 +/- 1.88 mg(-1) dry soil, with significant differences between plots; however, more than 40% of extracted mycelium was not viable, between 60 and 456 spores in 100 g of dry soil were recorded, but more than 64% showed some kind of damage. Infectivity values fluctuated between 20% and 50%, while MPN showed a mean value of 85.42 +/- 44.17 propagules (100 g dry soil). We conclude that secondary communities generated by elimination of vegetation with agricultural purposes in a dry forest in Nizanda do not show elimination of propagules, probably as a consequence of the low input agriculture practices in this area, which may encourage natural regeneration.  相似文献   

5.
We examined whether terrestrial vertebrates affected the arbuscular mycorrhizal fungal spore communities and mycorrhizal inoculum potential (MIP) of a tropical rain forest soil by comparing plots where terrestrial vertebrates had been excluded for 3 years to adjacent control plots. We extracted spores from soil using sucrose density gradient centrifugation and assayed MIP by growing seedlings of maize ( Zea mays ) and a rain forest tree ( Flindersia brayleana ) in intact soil cores from exclosure and control plots. Control plots had significantly higher spore abundance, species richness and diversity than exclosures. Spore community composition also differed significantly between exclosure and control plots. Seedlings of both plant species grown in control cores had significantly higher arbuscular-mycorrhizal colonization than those grown in exclosure cores. This study suggests that loss of vertebrates could alter rates of mycorrhizal colonization with consequences for community and ecosystem properties.  相似文献   

6.
Increased nitrogen (N) depositions expected in the future endanger the diversity and stability of ecosystems primarily limited by N, but also often co‐limited by other nutrients like phosphorus (P). In this context a nutrient manipulation experiment (NUMEX) was set up in a tropical montane rainforest in southern Ecuador, an area identified as biodiversity hotspot. We examined impacts of elevated N and P availability on arbuscular mycorrhizal fungi (AMF), a group of obligate biotrophic plant symbionts with an important role in soil nutrient cycles. We tested the hypothesis that increased nutrient availability will reduce AMF abundance, reduce species richness and shift the AMF community toward lineages previously shown to be favored by fertilized conditions. NUMEX was designed as a full factorial randomized block design. Soil cores were taken after 2 years of nutrient additions in plots located at 2000 m above sea level. Roots were extracted and intraradical AMF abundance determined microscopically; the AMF community was analyzed by 454‐pyrosequencing targeting the large subunit rDNA. We identified 74 operational taxonomic units (OTUs) with a large proportion of Diversisporales. N additions provoked a significant decrease in intraradical abundance, whereas AMF richness was reduced significantly by N and P additions, with the strongest effect in the combined treatment (39% fewer OTUs), mainly influencing rare species. We identified a differential effect on phylogenetic groups, with Diversisporales richness mainly reduced by N additions in contrast to Glomerales highly significantly affected solely by P. Regarding AMF community structure, we observed a compositional shift when analyzing presence/absence data following P additions. In conclusion, N and P additions in this ecosystem affect AMF abundance, but especially AMF species richness; these changes might influence plant community composition and productivity and by that various ecosystem processes.  相似文献   

7.
The arbuscular mycorrhizal status of fifteen mangroves and one mangrove associate was investigated from 27 sites of three inundation types namely, diurnal, usual springtide and summer springtide. Roots and rhizospheric soil samples were analysed for spore density, frequency of mycorrhizal colonization and some chemical characteristics of soil. Relative abundance, frequency and spore richness of AMF were assessed at each inundation type. All the plant species except Avicennia alba exhibited mycorrhizal colonization. The study demonstrated that mycorrhizal colonization and spore density were more influenced by host plant species than tidal inundation. Forty four AMF species belonging to six genera, namely Acaulospora, Entrophospora, Gigaspora, Glomus, Sclerocystis and Scutellospora, were recorded. Glomus mosseae exhibited highest frequency at all the inundation types; Glomus fistulosum, Sclerocystis coremioides and Glomus mosseae showed highest relative abundance at sites inundated by usual springtides, summer springtides and diurnal tides, respectively. Spore richness of AMF was of the order usual springtide > diurnal > summer springtide inundated sites. The mean spore richness was 3.27. Diurnally inundated sites had the lowest concentrations of salinity, available phosphorus, exchangeable potassium, sodium and magnesium. Statistical analyses indicated that mycorrhizal frequency and AMF spore richness were significantly negatively correlated to soil salinity. Spore richness was also significantly negatively correlated to available phosphorus. The soil parameters of the usual springtide inundated sites appeared to be favourable for the existence of maximum number of AMF. Glomus mosseae was the predominant species in terms of frequency in the soils of the Sundarbans.  相似文献   

8.
为了解广州地区7种菊科(Compositae)入侵植物与丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)的互作共生关系,调查了这7种菊科入侵植物在4种生境中的AMF侵染和根际土壤孢子密度,并分析土壤因子对AMF的影响。结果表明,7种入侵植物根内均受到AMF侵染,根际土壤中均检测到AMF孢子;AMF侵染在宿主间差异显著,生境间的差异不显著;孢子密度在生境和宿主间的差异均显著,人工绿地、农田果园的AMF孢子密度均显著高于森林周边和滨海地带。相关性分析表明,农田果园生境的根际土壤孢子密度与土壤有机质含量呈显著负相关关系;森林周边生境的AMF总侵染率与土壤全氮呈极显著正相关关系;人工绿地的AMF总侵染率与土壤速效氮含量呈显著负相关关系;滨海地带的AMF总侵染率与土壤有效磷含量呈显著负相关关系。这些对理解菊科植物入侵机理具有非常重要的作用。  相似文献   

9.
Arbuscular mycorrhizal fungi (AMF) play a key role in the maintenance of the balance of terrestrial ecosystems, but little is known about the biogeography of these fungi, especially on tropical islands. This study aims to compare AMF community structure along a transect crossing a fluvial-marine island and relate these communities with soil and vegetation parameters to shed light on the forces driving AMF community structure on a local scale. We tested the hypothesis that the composition of AMF communities changes across the island, even within short distances among sites, in response to differences in edaphic characteristics and vegetation physiognomies. We sampled roots and soils in five different natural and degraded habitats: preserved mangrove forest (MF), degraded mangrove forest (MD), natural Restinga forest (RF), and two regeneration Restinga forests (RR1 and RR2) on Ilha da Restinga, northeastern Brazil. We determined the mycorrhizal colonization rate and AMF community structure based on morphological spore identification. The island soils were sandy with pH varying from acid to neutral; higher levels of organic matter were registered in RF and lower in MF; other chemical and physical soil attributes differed along the habitat types on the island. In total, 22 AMF species were identified, without any difference in species richness. However, the diversity and composition of AMF communities, spore abundance per families, and mycorrhizal colonization were statistically different among the habitats. The composition of AMF communities was strongly related to soil characteristics, especially the sum of exchangeable bases. Our results indicate that the different habitat types have diverse AMF communities even within short distances among habitats. In conclusion, islands with high spatial heterogeneity in soil parameters and diverse vegetation are potential refuges for the diversity conservation of AM fungi.  相似文献   

10.
Establishing diverse mycorrhizal fungal communities is considered important for forest recovery, yet mycorrhizae may have complex effects on tree growth depending on the composition of fungal species present. In an effort to understand the role of mycorrhizal fungi community in forest restoration in southern Costa Rica, we sampled the arbuscular mycorrhizal fungal (AMF) community across eight sites that were planted with the same species (Inga edulis, Erythrina poeppigiana, Terminalia amazonia, and Vochysia guatemalensis) but varied twofold to fourfold in overall tree growth rates. The AMF community was measured in multiple ways: as percent colonization of host tree roots, by DNA isolation of the fungal species associated with the roots, and through spore density, volume, and identity in both the wet and dry seasons. Consistent with prior tropical restoration research, the majority of fungal species belonged to the genus Glomus and genus Acaulospora, accounting for more than half of the species and relative abundance found on trees roots and over 95% of spore density across all sites. Greater AMF diversity correlated with lower soil organic matter, carbon, and nitrogen concentrations and longer durations of prior pasture use across sites. Contrary to previous literature findings, AMF species diversity and spore densities were inversely related to tree growth, which may have arisen from trees facultatively increasing their associations with AMF in lower soil fertility sites. Changes to AMF community composition also may have led to variation in disturbance susceptibility, host tree nutrient acquisition, and tree growth. These results highlight the potential importance of fungal–tree–soil interactions in forest recovery and suggest that fungal community dynamics could have important implications for tree growth in disturbed soils.  相似文献   

11.
The cultivation of genetically engineered Bacillus thuringiensis toxin-expressing (Bt) maize continues to increase worldwide, yet the effects of Bt crops on arbuscular mycorrhizal fungi (AMF) in soil are poorly understood. In this field experiment, we investigated the impact of seven different genotypes of Bt maize and five corresponding non-Bt parental cultivars on AMF and evaluated plant growth responses at three different physiological time points. Plants were harvested 60 days (active growth), 90 days (tasseling and starting to produce ears), and 130 days (maturity) after sowing, and data on plant growth responses and percent AMF colonization of roots at each harvest were collected. Spore abundance and diversity were also evaluated at the beginning and end of the field season to determine whether the cultivation of Bt maize had a negative effect on AMF propagules in the soil. Plant growth and AMF colonization did not differ between Bt and non-Bt maize at any harvest period, but AMF colonization was positively correlated with leaf chlorophyll content at the 130-day harvest. Cultivation of Bt maize had no effect on spore abundance and diversity in Bt versus non-Bt plots over one field season. Plot had the most significant effect on total spore counts, indicating spatial heterogeneity in the field. Although previous greenhouse studies demonstrated that AMF colonization was lower in some Bt maize lines, our field study did not yield the same results, suggesting that the cultivation of Bt maize may not have an impact on AMF in the soil ecosystem under field conditions.  相似文献   

12.
A survey of arbuscular mycorrhizal fungi (AMF), arbuscular mycorrhizae (AM), and hyphal networks of AMF was carried out in sand dune sites of different successional stages in the Province Lands Area of Cape Cod National Seashore, Massachusetts. The study focused on large-scale plantings (each of 12–20 ha) of American beachgrass (Ammophila breviligulata) aged 0–7 yr and five adjacent natural dune areas. Sample sites ranged in vegetative cover from barren to forested. Spores of 17 species of AMF were recovered from the dunes. Over the successional sequence, there were increases in the richness and spore populations of the AMF community, the extent of colonization of A. breviligulata roots, and the mycorrhizal inoculum potential of the soil. Unvegetated sites lacked propagules of AMF, but roots of planted culms of A. breviligulata (which carried propagules of AMF) became mycorrhizal in <1 yr after planting. Spores were recovered from previously AMF-free sites that had been planted with beachgrass for 47 wk, and five species of AMF sporulated in sites <6 yr old. Significant hyphal networks were not present in any of the planted areas (<6 yr old at the time of sampling), but did occur in natural areas. The rate of invasion of areas planted to A. breviligulata by later successional plant species may in part depend upon the establishment of a vigorous network of hyphae of AMF in a site.  相似文献   

13.
房辉  P.N.Damodaran  曹敏 《生态学杂志》2007,26(9):1393-1396
研究了西双版纳热带次生林中杯丝锥(Castanopsis calathiformis)、红锥(C.hys-trix)、印度锥(C.indica)和截果柯(Lithocarpus truncatus)4种壳斗科植物的丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)的侵染状况,并从这些植物的根际土壤中分离鉴定了隶属于球囊霉属(Glomus)、巨孢囊霉属(Gigaspora)、盾巨孢囊霉属(Scutellospora)和无梗囊霉属(Acaulospora)的10种丛枝菌根真菌。这4种壳斗科植物根际AMF的孢子密度为14~22个.100g-1土壤,种的丰富度在4~7,平均频度为60.00%,相对多度为4.41%~22.06%,丛枝菌根真菌的定居水平达46.26%~51.40%。  相似文献   

14.
In the past few decades, it has been widely accepted that forest loss due to human actions alter the interactions between organisms. We studied the relationship between forest fragment size and arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) colonization, and the AMF spore communities in the rhizosphere of two congeneric Euphorbia species (native and exotic/invasive). We hypothesized that these fungal variables will differ with fragment size and species status, and predicted that (a) AMF and DSE colonization together with AMF spore abundance and diversity would be positively related to forest fragment size; (b) these relationships will differ between the exotic and the native species; and (c) there will be a negative relationship between forest fragment size and the availability of soil nutrients (NH4 +, NO3 , and phosphorus). This study was performed in the eight randomly selected forest fragments (0.86–1000 ha), immersed in an agricultural matrix from the Chaquean region in central Argentina. AMF root colonization in the native and exotic species was similar, and was positively related with forest fragment size. Likewise, AMF spore diversity and spore abundance were higher in the larger fragments. While DSE root colonization in the native host was positively related with forest fragment size, DSE colonization in the exotic host showed no relationship. Soil nutrients contents were negatively related with forest fragment size. In addition, NH4 + and NO3 were negatively correlated with AMF spores abundance and root colonization and with DSE colonization in the native species. The results observed in this study show how habitat fragmentation might affect the interaction between key soil components, such as rhizospheric plant-fungal symbiosis and nutrient availability. These environmental changes may have important consequences on plant community composition and nutrient dynamics in this fragmented landscape.  相似文献   

15.
Yam (Dioscorea spp.) is a tuberous staple food crop of major importance in the sub-Saharan savannas of West Africa. Optimal yields commonly are obtained only in the first year following slash-and-burn in the shifting cultivation systems. It appears that the yield decline in subsequent years is not merely caused by soil nutrient depletion but might be due to a loss of the beneficial soil microflora, including arbuscular mycorrhizal fungi (AMF), associated with tropical “tree-aspect” savannas and dry forests that are the natural habitats of the wild relatives of yam. Our objective was to study the AMF communities of natural savannas and adjacent yam fields in the Southern Guinea savanna of Benin. AMF were identified by morphotyping spores in the soil from the field sites and in AMF trap cultures with Sorghum bicolor and yam (Dioscorea rotundata and Dioscorea cayenensis) as bait plants. AMF species richness was higher in the savanna than in the yam-field soils (18–25 vs. 11–16 spp.), but similar for both ecosystems (29–36 spp.) according to the observations in trap cultures. Inoculation of trap cultures with soil sampled during the dry season led to high AMF root colonization, spore production, and species richness (overall 45 spp.) whereas inoculation with wet-season soil was inefficient (two spp. only). The use of D. cayenensis and D. rotundata as baits yielded 28 and 29 AMF species, respectively, and S. bicolor 37 species. AMF root colonization, however, was higher in yam than in sorghum (70–95 vs. 11–20%). After 8 months of trap culturing, the mycorrhizal yam had a higher tuber biomass than the nonmycorrhizal controls. The AMF actually colonizing D. rotundata roots in the field were also studied using a novel field sampling procedure for molecular analyses. Multiple phylotaxa were detected that corresponded with the spore morphotypes observed. It is, therefore, likely that the legacy of indigenous AMF from the natural savanna plays a crucial role for yam productivity, particularly in the low-input traditional farming systems prevailing in West Africa.  相似文献   

16.
Semi-arid tropical soils, characterized by low soil organic carbon (SOC) with limited available macronutrients and micronutrients for crop plants, are predicated to have a yield sustainability problem in the future due to intensive cropping and limited nutrient management adoptions. Arbuscular mycorrhizal fungi (AMF), the functional link between plant and soil, play a pivotal role in nutrient cycling, organic matter stabilization and soil structure and fertility improvement. Hence, so far unexplored or underutilized, native AMF could be a potential resource for fertility management of these semi-arid tropical soils. Hence, in the present investigation, we assessed the abundance and diversity of AMF in phosphorus-deficient agricultural soils of semi-arid tropics of southern India. Our results show that the spore density and infective propagules of AMF were relatively low in these soils. The morpho-typing of extracted AMF spores revealed that these soils were dominated by glomeraceae (six species of Glomus) while species of Gigaspora, Scutellospora and Acaulospora were found in low abundance. The diversity indices assessed for the AMF species were also globally low. The non-metric multi-dimensional scaling and hierarchical cluster analysis of species richness showed variation in the community composition of AMF in the soils. The principal component analysis of the assessed soil variables suggest that the available phosphorus (P), SOC and dehydrogenase and alkaline phosphatase activities had negative impact on spore density and infective propagules of AMF with no effect on species diversity. The regression analyses reveal that the available P is the significant soil variable that drives the AMF abundance and infectivity. This study opens the possibilities of effective utilization of native mycorrhizae for agriculture in semi-arid tropical soils.  相似文献   

17.
We examined numbers of plant species and individuals relative to land use in an agricultural settlement in the Brazilian Amazon. Land uses were forest, cropped after forest, fallows, cropped after fallow, and pasture. These corresponded roughly to farmers' land-use changes over time. Numbers of species and diversity indices were generally highest in forest, but we found quite similar values in older fallows as a result of both survival/re-establishment of forest species and emergence of plants not encountered in forest. The dominant species in fallows, however, were different from those in forest. Lands cropped using slash-and-burn maintained moderate numbers of species–both forest and non-forest. Trends in plant density (individuals per unit ground area) on cropped lands were mainly related to invasion of weedy species (increasing in time after slash-and-burn) and shifts in crop species (replacement of small-sized rice by larger-sized maize and cassava). Useful forest plants (e.g. for construction purposes, food and medicines) decreased with land conversion, although new species also appeared. The fewest species, tree species, and useful plants, and the greatest losses of the forest flora, were encountered in pastures. Consequently, conversion to pasture rather than slash-and-burn agriculture per se led to high biodiversity loss.  相似文献   

18.
Effect of disturbance on root colonization and vertical distribution of arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) was investigated at two adjacent sites of Lal Suhanra Biosphere Reserve, Pakistan. Disturbance clearly affected AMF and DSE colonization, vertical distribution of AMF and plant community structure. Mean colonization of AMF and DSE was slightly less at the disturbed site. Average spore densities, diversity and richness of AMF and DSE were higher at the undisturbed site. A study of the vertical distribution of AMF associated with the five plant species most common to each study site indicated that beside AMF and DSE colonization disturbance may affect AMF species composition. Correlation of AMF with DSE is also discussed.  相似文献   

19.
Diversity of arbuscular mycorrhizal fungi (AMF) in 27-year long-term NP-fertilization plots under a maize cropping system in Thailand was studied through spore morphological characterization. The plots received 0–0, 60–60, 120–120 and 180–180 kg N-P2O5 ha–1 year–1 as ammonium sulfate and triple superphosphate. The plots were sampled monthly for one year, the AMF spores were counted and morphotyped, and taxa were identified after morphotyping and monospecific pot culture. Spore number g–1 soil, relative spore abundance and Shannon-Wiener indexes were calculated. Sixteen putative taxa were recorded from the field of which nine sporulated on maize roots in pot culture. The long-term fertilization caused decreases in AMF total spore numbers and variation in species diversity depended on sampling time. Effects of fertilization on spore number and also relative spore abundance varied with species and sampling time. Among the nine species sporulating under maize, only Acaulospora sp.1 showed no change (P > 0.003 after Bonferroni correction) in spore number with fertilization in the field; and was therefore classified as an AMF species insensitive to fertilization. Spores of Entrophospora schenckii, Glomus mosseae, Glomus sp.1, Glomus geosporum-like and Scutellospora fulgida, though they decreased in absolute numbers in response to fertilization, showed no change (P > 0.003 after Bonferroni correction) in relative abundance; these species were classified as AMF species slightly sensitive to fertilization. Three unidentified species of Glomus, though they decreased in absolute numbers in response to fertilization, showed decreases (P < 0.003 after Bonferroni correction) in relative abundance; these species were classified as AMF species highly sensitive to fertilization.  相似文献   

20.
Spence LA  Dickie IA  Coomes DA 《Mycorrhiza》2011,21(4):309-314
Mycorrhizal fungi are important symbionts for the majority of plant species, but their role in determining the susceptibility of habitat to plant invasion is poorly understood. Hieracium lepidulum is an arbuscular mycorrhizal herb, currently invading the understorey of ectomycorrhizal Nothofagus solandri var. cliffortioides (mountain beech) forest in New Zealand. Mountain beech is solely ectomycorrhizal, and other plant species within the understorey occur sporadically. Hieracium has been shown to establish preferentially in microsites with higher plant species richness at a scale of less than 1 m2 within mountain beech forest, and we tested the hypothesis that more diverse microsites (<1 m2) are associated with higher levels of arbuscular mycorrhizal fungal (AMF) inoculum. We found low levels of AMF inoculum across all microsites, and over a third of samples contained no inoculum at all. Higher vascular-plant species richness (but not biomass) was associated with higher AMF spore densities in field soil, and greater AMF colonization of H. lepidulum seedlings in a bioassay. Absence of AMF inoculum from much of the soil and the positive association of inoculum potential with species richness provide a potential mechanism for the establishment of a positive diversity–invasibility relationship in the mountain beech forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号