首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
钙调神经磷酸酶的研究进展   总被引:8,自引:0,他引:8  
钙调神经磷酸酶(CaN)是一种受Ca2+/钙调素调节的丝/苏氨酸蛋白磷酸酶,广泛存在于哺乳动物的组织细胞中,作为Ca2+信号下游的一种效应分子,参与多种细胞功能的调节.在T细胞活化的信号传导中起到调节枢纽的作用;在神经递质的释放、突触可塑性方面亦有重要的调节作用.新近的研究表明,CaN在心肌肥厚的发生发展中起到中心作用.对CaN的分子结构、酶学特性、组织分布、信号传导及生物学功能方面的研究进展进行了介绍.  相似文献   

2.
酿酒酵母(SaccharomycescP增v括fdP)细胞可以通过ca2+/钙调磷酸酶信号途径来应对许多外界环境胁迫。在交配信息素、盐或者其他环境压力存在的条件下,钙离子会通过细胞质膜上的未鉴定的钙转运蛋白x和M或者由Cchl和Midl组成的钙通道进入细胞质。胞质内钙离子浓度的增加会激活细胞质里的钙调磷酸酶(calcineurin)。钙调磷酸酶的一个非常重要的作用是去磷酸化细胞质内的转录因子Crzl,造成它快速地从细胞质转移到细胞核,从而诱导包括液泡膜上钙泵蛋白基因PMCl以及内质网膜和高尔基体膜上钙泵蛋白基因尸脚,在内的目标基因的表达。这两个钙泵蛋白和液泡膜上的Ca2+/H+交换蛋白Vcxl一起作用,将细胞质内的钙离子浓度控制在50~200nmol/L的正常生理浓度内.使细胞能够正常生长。该综述主要论述了酿酒酵母细胞内Ca2+/钙调磷酸酶信号途径的最新研究进展。  相似文献   

3.
钙调蛋白依赖的蛋白激酶(CaMK)是一类分布广泛的丝/苏氨酸蛋白激酶家族,在钙离子和钙调蛋白存在的条件下发生自磷酸化而被激活,在细胞内对于钙信号的传递具有重要的介导作用.近年来的研究表明CaMKⅡ是参与调节卵母细胞减数分裂的重要分子,在卵母细胞成熟、极体排放、受精和活化等过程中发挥作用.CaMKⅡ作为Ca2+的下游信号分子,在受精后促进成熟促进因子(MPF)和细胞静止因子(CSF)的失活,并调节纺锤体微管的组装和中心体的复制过程.虽然CaMKⅡ在减数分裂中的作用广泛而关键,但目前的研究主要集中于低等动物和小鼠,今后有待进一步阐明该蛋白激酶在其他哺乳动物中的作用和调节机制.  相似文献   

4.
钙调蛋白研究的新进展   总被引:3,自引:0,他引:3  
最近对钙调蛋白(CaM)的研究,揭示了它的三维结构及其两个结构域的功能。肯定了CaM的Ⅲ、Ⅳ位是Ca2+结合的高亲和位,并据此提出了CaM活化靶酶的新模型。发现神经钙蛋白(CaN)为一种依赖CaM的磷酸酶和两种最强的CaM桔抗剂多肽Mastoparan和药物EBB。证明一些疾病同Ca2+、CaM有关。  相似文献   

5.
为了确定Ca2+信号途径是否参与、在哪一时期参与稻瘟病菌分生孢子萌发及附着胞形成过程的调控,用四种可从不同位点阻断Ca2+信号途径的抑制剂分别处理分生孢子,观察抑制剂对孢子萌发及附着胞形成过程的抑制作用。结果表明:Ca2+螯合剂EGTA、Ca2+通道抑制剂Verapamil、抑制磷脂酶C活性的抑制剂U-73122、影响钙调素与钙调素依赖蛋白激酶作用位点的抑制剂KN-93,随着浓度的增加,对孢子萌发和附着胞形成过程的抑制作用明显增强;同一浓度下,抑制剂对附着胞形成过程的抑制作用大于孢子萌发过程;抑制剂影响孢子萌发和附着胞形成过程在萌发早期(1~4h)最有效;在完全被抑制、不能萌发的孢子内出现了许多颗粒状囊泡;抑制剂可使附着胞形态明显变小甚至不能形成。以上结果表明钙信号途径参与了稻瘟病菌孢子萌发及疏水条件下附着胞形成过程的调控。  相似文献   

6.
动植物系统研究表明,钙调素不仅在结合钙离子时调节多种靶酶或靶蛋白的活性,而且没有钙离子结合时,还可以通过结合钙不依赖的钙调素结合蛋白,发挥多种生物学作用.然而,目前却没有体内分析钙调素与钙不依赖钙调素结合蛋白相互作用的方法.首先,采用定点突变的方式,得到了拟南芥钙调素亚型2的多个突变基因mCaM2,随后,大肠杆菌重组表达突变蛋白的电泳迁移率及45Ca2+覆盖分析表明,得到了编码失去钙结合能力的钙调素的突变基因mCaM21234, mCaM21234突变钙调素中所有4个钙结合EF-hand结构域中的关键氨基酸谷氨酸均突变为谷氨酰胺.在酵母双杂交体系中,作为诱饵蛋白的突变钙调素mCaM21234与我们前期体外方法报道的钙不依赖性钙调素结合蛋白AtIQD26存在相互作用.这将为钙不依赖性钙调素结合蛋白提供有用的体内研究工具,有利于我们全面认识钙-钙调素-钙调素结合蛋白信号途径.  相似文献   

7.
C-激酶(PKC)在跨膜信息传递中具有重要作用,其作用过程与A-激酶、G-激酶、Ca2+·CaM蛋白激酶相互区别而又紧密联系。C-激酶系通过催化多种蛋白特别是胰岛素受体,生长因子受体、钙调蛋白等生理活性蛋白的Ser/Thr残基磷酸化,以调节细胞代谢,分化、生长、增殖乃至癌变。  相似文献   

8.
Ca2+是植物体内重要的第二信使,当植物受到各种环境刺激时,细胞内的Ca2+浓度瞬间产生变化,并被Ca2+信号效应器识别,通过与下游的靶蛋白结合并调节其活性,参与调控植物各种生理活动。钙调素结合蛋白以依赖Ca2+或不依赖Ca2+的方式结合钙调素。对目前已经鉴定的植物钙调素结合蛋白结构特点进行了综述,并着重介绍了钙调素结合蛋白是如何参与调节植物对生物胁迫和非生物胁迫的反应,为提高作物抗病抗逆能力研究提供理论基础。  相似文献   

9.
本文研究了酿酒酵母细胞增殖对Ca2+需求的证据。结果表明:SD-Ca培养基中外加1mmol/L的Ca2+明显促进酿酒酵母细胞增殖,外源Ca2+浓度在0~20mmol/L范围内变动时,随Ca2+浓度增加,细胞生长到达稳定期的终浓度也越大;5、10mmol/L的EGTA可明显延缓细胞生长的延滞期,但是最终不能抑制细胞增殖;酿酒酵母在SD-Ca培养基中继代培养4次,随增殖代数增加,细胞总钙含量没有明显变化,说明酵母能够在低钙介质中生长可能是因为具有捕捉和富集钙的功能;以Fluo-3作为胞质Ca2+指示剂,通过激光扫描共聚焦显微镜观察,发现随胞外Ca2+浓度增加,胞质中游离Ca2+浓度也相应增加。这些证据都揭示了Ca2+在酿酒酵母细胞增殖过程中是必需的。  相似文献   

10.
钙调神经磷酸酶是70年代末80年代初发现的一种直接依赖于钙和钙调素的磷蛋白磷酸酶。它大量存在于脑内,分子量80k,由催化亚基A和调节亚基B1:1组成。钙调神经磷酸酶是个多底物的磷蛋白磷酸酶,它的活性还受Mn2+,Ni2+等多种金属离子的调节。  相似文献   

11.
12.
Two well characterized signal transduction cascades regulating fungal development and virulence are the MAP kinase and cAMP signaling cascades. Here we review the current state of knowledge on cAMP signaling cascades in fungi. While the processes regulated by cAMP signaling in fungi are as diverse as the fungi themselves, the components involved in signal transduction are remarkably conserved. Fungal cAMP signaling cascades are also quite versatile, which is apparent from the differential regulation of similar biological processes. In this review we compare and contrast cAMP signaling pathways that regulate development in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and differentiation and virulence in the human pathogen Cryptococcus neoformans and the plant pathogen Ustilago maydis. We also present examples of interaction between the cAMP and MAP kinase signaling cascades in the regulation of fungal development and virulence.  相似文献   

13.
In filamentous fungi, intracellular signaling pathways which are mediated by changing calcium levels and/or by activated protein kinase C (Pkc), control fungal adaptation to external stimuli. A rise in intracellular Ca2+ levels activates calcineurin subunit A (CnaA), which regulates cellular calcium homeostasis among other processes. Pkc is primarily involved in maintaining cell wall integrity (CWI) in response to different environmental stresses. Cross-talk between the Ca2+ and Pkc-mediated pathways has mainly been described in Saccharomyces cerevisiae and in a few other filamentous fungi. The presented study describes a genetic interaction between CnaA and PkcA in the filamentous fungus Aspergillus nidulans. Overexpression of pkcA partially rescues the phenotypes caused by a cnaA deletion. Furthermore, CnaA appears to affect the regulation of a mitogen-activated kinase, MpkA, involved in the CWI pathway. Reversely, PkcA is involved in controlling intracellular calcium homeostasis, as was confirmed by microarray analysis. Furthermore, overexpression of pkcA in a cnaA deletion background restores mitochondrial number and function. In conclusion, PkcA and CnaA-mediated signaling appear to share common targets, one of which appears to be MpkA of the CWI pathway. Both pathways also regulate components involved in mitochondrial biogenesis and function. This study describes targets for PkcA and CnaA-signaling pathways in an A. nidulans and identifies a novel interaction of both pathways in the regulation of cellular respiration.  相似文献   

14.
Adaptation to the host environment is crucial for fungal pathogenesis. Calcium (Ca2+) signals are essential for fungal cells to respond rapidly to stress stimuli. In eukaryotic cells, Ca2+ is the main intracellular secondary messenger and regulates a myriad of processes, including the cellular fitness of the fungal pathogen Cryptococcus neoformans. In this minireview, we highlight the main cryptococcal processes regulated by Ca2+. Moreover, we underline all the characterized proteins responsible for intracellular calcium homeostasis in this yeast, such as Ca2+ transporters and binding proteins. These elements, in general, are essential for C. neoformans’ growth and adaptation to the host environment, as well as to virulence mechanisms. We also revisit the specific traits of the calcineurin signaling pathway in C. neoformans, which is the major pathway regulated by calcium and is crucial for yeast pathogenesis, adaptation, and growth at 37 °C. Notably, several Ca2+-related functions are highly conserved throughout fungal cells. Moreover, C. neoformans exhibits exclusive, significant features that are required for disease progression, thus attracting attention as feasible targets for antifungal drug development. Collectively, all the available data related to Ca2+ processes clarify the complex role that Ca2+ plays within cryptococcal cells, participating in host adaptation, transmigration, antifungal resistance, cell growth, and more.  相似文献   

15.
16.
The bone remodelling process is closely related to bone health. Osteoblasts and osteoclasts participate in the bone remodelling process under the regulation of various factors inside and outside. Excessive activation of osteoclasts or lack of function of osteoblasts will cause occurrence and development of multiple bone‐related diseases. Ca2+/Calcineurin/NFAT signalling pathway regulates the growth and development of many types of cells, such as cardiomyocyte differentiation, angiogenesis, chondrogenesis, myogenesis, bone development and regeneration, etc. Some evidences indicate that this signalling pathway plays an extremely important role in bone formation and bone pathophysiologic changes. This review discusses the role of Ca2+/Calcineurin/NFAT signalling pathway in the process of osteogenic differentiation, as well as the influence of regulating each component in this signalling pathway on the differentiation and function of osteoblasts, whereby the relationship between Ca2+/Calcineurin/NFAT signalling pathway and osteoblastogenesis could be deeper understood.  相似文献   

17.
18.
Calcineurin is a calmodulin-stimulated phosphatase that regulates the nuclear translocation of nuclear factor of activated T cell (NFAT) c1-4 through dephosphorylation. We believe that this mechanism plays various roles in the remodeling and maintenance of Ictidomys tridecemlineatus skeletal muscle. During hibernation, bouts of torpor and arousal take place, and squirrels do not lose muscle mass despite being inactive. Protein expression of Ca2+ signaling proteins were studied using immunoblotting. A DNA-protein interaction ELISA technique was created to test the binding of NFATs in the nucleus to DNA probes containing the NFAT response element under environmental conditions reflective of those during hibernation. Calcineurin protein levels increased by 3.08-fold during torpor (compared to euthermic control), whereas calpain1 levels also rose by 3.66-fold during torpor. Calmodulin levels were elevated upon entering torpor. NFATc4 binding to DNA showed a 1.4-fold increase during torpor, and we found that this binding was further enhanced when 600 nM of Ca2+ was supplemented. We also found that decreasing the temperature of ELISAs resulted in progressive decreases in the binding of NFATs c1, c3, and c4 to DNA. In summary, calmodulin and calpain1 appear to activate calcineurin and NFATc4 during torpor. NFAT binding to target promoters is affected by intranuclear [Ca2+] and environmental temperatures. Therefore, Ca2+ signaling and temperature changes play key roles in regulation of the NFAT-calcineurin pathway in skeletal muscle of hibernating 13-lined ground squirrels over the torpor-arousal cycle, and they may contribute to the avoidance of disuse-induced muscle atrophy that occurs naturally in these animals.  相似文献   

19.
Neurotransmitter stimulation of plasma membrane receptors stimulates salivary gland fluid secretion via a complex process that is determined by coordinated temporal and spatial regulation of several Ca2+ signaling processes as well as ion flux systems. Studies over the past four decades have demonstrated that Ca2+ is a critical factor in the control of salivary gland function. Importantly, critical components of this process have now been identified, including plasma membrane receptors, calcium channels, and regulatory proteins. The key event in activation of fluid secretion is an increase in intracellular [Ca2+] ([Ca2+]i) triggered by IP3-induced release of Ca2+ from ER via the IP3R. This increase regulates the ion fluxes required to drive vectorial fluid secretion. IP3Rs determine the site of initiation and the pattern of [Ca2+]i signal in the cell. However, Ca2+ entry into the cell is required to sustain the elevation of [Ca2+]i and fluid secretion. This Ca2+ influx pathway, store-operated calcium influx pathway (SOCE), has been studied in great detail and the regulatory mechanisms as well as key molecular components have now been identified. Orai1, TRPC1, and STIM1 are critical components of SOCE and among these, Ca2+ entry via TRPC1 is a major determinant of fluid secretion. The receptor-evoked Ca2+ signal in salivary gland acinar cells is unique in that it starts at the apical pole and then rapidly increases across the cell. The basis for the polarized Ca2+ signal can be ascribed to the polarized arrangement of the Ca2+ channels, transporters, and signaling proteins. Distinct localization of these proteins in the cell suggests compartmentalization of Ca2+ signals during regulation of fluid secretion. This chapter will discuss new concepts and findings regarding the polarization and control of Ca2+ signals in the regulation of fluid secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号