首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
3.
4.
5.
线粒体是除细胞核之外唯一携带遗传物质的细胞器,其线粒体DNA(mitochondrial DNA,mtDNA)控制着线粒体一些最基本的性质,对细胞功能有着重要影响.DNA甲基化是调节基因表达的重要方式之一.研究表明mtDNA存在CpG位点的低甲基化,并且mtDNA基因的表达受核DNA(nuclear DNA,nDNA)及线粒体自身DNA甲基化的调控,mtDNA和nDNA协同作用参与机体代谢调节和疾病发生发展过程.就近年来mtDNA与DNA甲基化的关系作一综述.  相似文献   

6.
王萍  房静远 《生命科学》2009,(2):291-294
线粒体DNA(mitochondrial DNA,mtDNA)遗传信息量虽小,却控制着线粒体一些最基本的性质,对细胞及其功能有着重要影响。mtDNA的损伤与衰老、肿瘤等疾病的发生有关。DNA甲基化是调节基因表达的重要方式之一。mtDNA基因的表达受核DNA(nuclear DNA,nDNA)的调控,mtDNA和nDNA协同作用参与机体代谢调节和发病。本文就近年来mtDNA与DNA甲基化的关系作一综述。  相似文献   

7.
线粒体是真核细胞至关重要的细胞器,参与机体细胞能量代谢和细胞凋亡等多种生物学过程。线粒体还参与机体的天然免疫反应的调节。线粒体不仅可以作为病毒免疫反应的载体,还可以通过产生ROS参与抗菌反应。线粒体受到损伤、刺激后,可释放mt DNA,TFAM,ROS,ATP,心磷脂和甲酰肽等内容物。这些分子可以作为损伤相关模式分子(damage-associated molecular patterns,DAMPs)被模式识别受体识别,从而参与宿主的免疫调节。研究表明,线粒体已成为内源性DAMPs的重要来源,在先天性免疫应答以及疾病进展过程中发挥着重要的作用。本文就线粒体来源的损伤相关模式分子在机体免疫调节中的作用进行综述。  相似文献   

8.
线粒体DNA(mitochondrial DNA,mtDNA)与一系列蛋白质相互作用形成核蛋白复合体,并包装折叠成类似原核生物拟核的结构,称为线粒体拟核(mitochondrial nucleoid)。参与线粒体拟核组成的相关蛋白包括线粒体转录因子、线粒体单链DNA结合蛋白以及多种参与线粒体中代谢途径的多功能蛋白。线粒体拟核结构的阐明对于进一步研究线粒体形态与功能以及mtDNA的遗传模式、基因表达调控具有重要意义。本文综述了线粒体拟核结构的最新研究进展,着重介绍组成拟核结构的重要蛋白,以及这些蛋白如何将mtDNA与柠檬酸循环等线粒体重要代谢途径相联系。同时,拟核相关蛋白(nucleoid-associated protein)的异常涉及多种人类疾病,这为研究线粒体相关疾病提供了新的思路。  相似文献   

9.
线粒体双层膜的完整性是细胞存活的关键因素,其遭到破坏后会使细胞发生凋亡、焦亡或炎症。线粒体膜的破坏包括线粒体外膜通透、线粒体内膜通透、通透性转换,三者可通过调控不同的信号通路导致不同的细胞命运。然而,这些信号通路之间存在交叉关联,使得线粒体膜对细胞命运的调控错综复杂,导致人们对其机制缺乏清晰的认识。本综述首先分析了不同程度线粒体外膜通透在细胞存活、癌变或凋亡中的作用,接着讨论了线粒体内膜通透通过引发线粒体DNA释放促进炎症发生的分子机制,然后阐述了线粒体通透性转换引发焦亡的作用机制,最后总结出线粒体膜完整性影响细胞命运决策的内在关联。深入了解线粒体膜完整性调控细胞命运的分子动力学机制,有助于为癌症和神经退行性疾病的诊疗提供思路。  相似文献   

10.
衰老性肌萎缩中的线粒体功能障碍与线粒体未折叠蛋白反应(mitochondrial unfolded protein response,UPRmt)和线粒体自噬构成的线粒体质量控制(mitochondrial quality control, MQC)的损伤密切相关。线粒体质量控制是线粒体维持内环境稳态的保护机制,其中UPRmt和线粒体自噬分别负责受损线粒体的修复和清除。UPRmt应对未折叠蛋白应激,维持线粒体和细胞蛋白质稳态,延长寿命并调节代谢重构,而线粒体自噬选择性地去除受损严重的线粒体,两者共同维护线粒体稳态。本文总结UPRmt与线粒体自噬的互作、衰老骨骼肌UPRmt与线粒体自噬的变化和运动逆转衰老骨骼肌UPRmt和线粒体自噬的机制,重点总结运动源的活性氧(reactive oxygen species, ROS)调控UPRmt与线粒体自噬互作的信号通路研究进展,并为衰老性肌萎缩进程中线粒体质量控制的维持提供参考。  相似文献   

11.
线粒体是真核细胞至关重要的细胞器,参与机体细胞能量代谢和细胞凋亡等多种生物学过程。线粒体还参与机体的天然免疫反应的调节。线粒体不仅可以作为病毒免疫反应的载体,还可以通过产生ROS参与抗菌反应。线粒体受到损伤、刺激后,可释放mtDNA,TFAM,ROS,ATP,心磷脂和甲酰肽等内容物。这些分子可以作为损伤相关模式分子(damage associated molecular patterns, DAMPs)被模式识别受体识别,从而参与宿主的免疫调节。研究表明,线粒体已成为内源性DAMPs的重要来源,在先天性免疫应答以及疾病进展过程中发挥着重要的作用。本文就线粒体来源的损伤相关模式分子在机体免疫调节中的作用进行综述。  相似文献   

12.
One of the main functions of mitochondria is production of ATP for cellular energy needs, however, it becomes more recognized that mitochondria are involved in differentiation and activation processes of immune cells. Upon activation, immune cells have a high need for energy. Immune cells have different strategies to generate this energy. In pro-inflammatory cells, such as activated monocytes and activated T and B cells, the energy is generated by increasing glycolysis, while in regulatory cells, such as regulatory T cells or M2 macrophages, energy is generated by increasing mitochondrial function and beta-oxidation.Except for being important for energy supply during activation, mitochondria also induce immune responses. During an infection, they release mitochondrial danger associated molecules (DAMPs) that resemble structures of bacterial derived pathogen associated molecular patterns (PAMPs). Such mitochondrial DAMPS are for instance mitochondrial DNA with hypomethylated CpG motifs or a specific lipid that is only present in prokaryotic bacteria and mitochondria, i.e. cardiolipin. Via release of such DAMPs, mitochondria guide the immune response towards an inflammatory response against pathogens. This is an important mechanism in early detection of an infection and in stimulating and sustaining immune responses to fight infections. However, mitochondrial DAMPs may also have a negative impact. If mitochondrial DAMPs are released by damaged cells, without the presence of an infection, such as after a trauma, mitochondrial DAMPs may induce an undesired inflammatory response, resulting in tissue damage and organ dysfunction. Thus, immune cells have developed mechanisms to prevent such undesired immune activation by mitochondrial components.In the present narrative review, we will describe the current view of mitochondria in regulation of immune responses. We will also discuss the current knowledge on disturbed mitochondrial function in immune cells in various immunological diseases.  相似文献   

13.
14.
Myocardial ischemia/reperfusion (I/R) is the most common cause of myocardial inflammation, which is primarily a manifestation of the innate immune responses. Innate immunity is activated when pattern recognition receptors (PRRs) respond to molecular patterns common to microbes and to danger signals expressed by injured or infected cells, so called pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The expression of various PRRs in cardiomyocytes and the release of DAMPs from cardiomyocytes subjected to I/R injury, through active mechanisms as well as passive processes, enable cardiomyocytes to generate innate immune responses. Studies in isolated heart and cardiomyocytes have confirmed the inflammatory and functional effects of cardiac PRRs especially Toll-like receptors in response to I/R-derived DAMPs, such as heat shock proteins. This review addresses the active role of cardiomyocytes in mediating innate inflammatory responses to myocardial I/R. We propose that cardiomyocytes act as innate immune cells in myocardial I/R injury.  相似文献   

15.
Mitochondria, the powerhouses of our cells, are remnants of a eubacterial endosymbiont. Notwithstanding the evolutionary time that has passed since the initial endosymbiotic event, mitochondria have retained many hallmarks of their eubacterial origin. Recent studies have indicated that during perturbations of normal homeostasis, such as following acute trauma leading to massive necrosis and release of mitochondria, the immune system might mistake symbiont for enemy and initiate an inappropriate immune response. The innate immune system is the first line of defense against invading microbial pathogens, and as such is the primary suspect in the recognition of mitochondria-derived danger-associated molecular patterns and initiation of an aberrant response. Conversely, innate immune mechanisms are also central to noninflammatory clearance of innocuous agents. Here we investigated the role of a central humoral component of innate immunity, the lectin pathway of complement, in recognition of mitochondria in vitro and in vivo. We found that the soluble pattern recognition molecules, mannan-binding lectin (MBL), L-ficolin, and M-ficolin, were able to recognize mitochondria. Furthermore, MBL in complex with MBL-associated serine protease 2 (MASP-2) was able to activate the lectin pathway and deposit C4 onto mitochondria, suggesting that these molecules are involved either in homeostatic clearance of mitochondria or in induction of untoward inflammatory reactions. We found that following mitochondrial challenge, C3 was consumed in vivo in the absence of overt inflammation, indicating a potential role of complement in noninflammatory clearance of mitochondria. Thus, we report here the first indication of involvement of the lectin pathway in mitochondrial immune handling.  相似文献   

16.
The innate immune system has a key role in the mammalian immune response. Recent research has demonstrated that mitochondria participate in a broad range of innate immune pathways, functioning as signalling platforms and contributing to effector responses. In addition to regulating antiviral signalling, mounting evidence suggests that mitochondria facilitate antibacterial immunity by generating reactive oxygen species and contribute to innate immune activation following cellular damage and stress. Therefore, in addition to their well-appreciated roles in cellular metabolism and programmed cell death, mitochondria appear to function as centrally positioned hubs in the innate immune system. Here, we review the emerging knowledge about the roles of mitochondria in innate immunity.  相似文献   

17.
In virus-infected cells, RIG-I-like receptor (RLR) recognizes cytoplasmic viral RNA and triggers innate immune responses including production of type I and III interferon (IFN) and the subsequent expression of IFN-inducible genes. Interferon-β promoter stimulator 1 (IPS-1, also known as MAVS, VISA and Cardif) is a downstream molecule of RLR and is expressed on the outer membrane of mitochondria. While it is known that the location of IPS-1 is essential to its function, its underlying mechanism is unknown. Our aim in this study was to delineate the function of mitochondria so as to identify more precisely its role in innate immunity. In doing so we discovered that viral infection as well as transfection with 5′ppp-RNA resulted in the redistribution of IPS-1 to form speckle-like aggregates in cells. We further found that Mitofusin 1 (MFN1), a key regulator of mitochondrial fusion and a protein associated with IPS-1 on the outer membrane of mitochondria, positively regulates RLR-mediated innate antiviral responses. Conversely, specific knockdown of MFN1 abrogates both the virus-induced redistribution of IPS-1 and IFN production. Our study suggests that mitochondria participate in the segregation of IPS-1 through their fusion processes.  相似文献   

18.
19.
In the cytosol, the sensing of RNA viruses by the RIG-I-like receptors (RLRs) triggers a complex signaling cascade where the mitochondrial antiviral signaling protein (MAVS) plays a crucial role in orchestrating the innate host response through the induction of antiviral and inflammatory responses. Hence, in addition to their known roles in the metabolic processes and the control of programmed cell death, mitochondria are now emerging as a fundamental hub for innate anti-viral immunity. This review summarizes the findings related to the MAVS adapter and mitochondria in the innate immune response to RNA viruses.  相似文献   

20.
Plants possess an innate immune system capable of restricting invasion by most potential pathogens. At the cell surface, the recognition of microbe‐associated molecular patterns (MAMPs) and/or damage‐associated molecular patterns (DAMPs) by pattern recognition receptors (PRRs) represents the first event for the prompt mounting of an effective immune response. Pathogens have evolved effectors that block MAMP‐triggered immunity. The Pseudomonas syringae effector AvrPto abolishes immunity triggered by the peptide MAMPs flg22 and elf18, derived from the bacterial flagellin and elongation factor Tu, respectively, by inhibiting the kinase function of the corresponding receptors FLS2 and EFR, as well as their co‐receptors BAK1 and BKK1. Oligogalacturonides (OGs), a well‐known class of DAMPs, are oligomers of α‐1,4‐linked galacturonosyl residues, released on partial degradation of the plant cell wall homogalacturonan. We show here that AvrPto affects only a subset of the OG‐triggered immune responses and that, among these responses, only a subset is affected by the concomitant loss of BAK1 and BKK1. However, the antagonistic effect on auxin‐related responses is not affected by either AvrPto or the loss of BAK1/BKK1. These observations reveal an unprecedented complexity among the MAMP/DAMP response cascades. We also show that the signalling system mediated by Peps, another class of DAMPs, and their receptors PEPRs, contributes to OG‐activated immunity. We hypothesize that OGs are sensed through multiple and partially redundant perception/transduction complexes, some targeted by AvrPto, but not necessarily comprising BAK1 and BKK1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号