首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.
The building blocks fac-[99mTc{κ3-HB(timMe)3}(CO)3] and fac-[99mTc{κ3-R(μ-H)B(timMe)2}(CO)3] [R is H (4a), Ph (5a); timMe is 2-mercapto-1-methylimidazolyl] were obtained almost quantitatively by reacting fac-[99mTc(CO)3(H2O)3]+ with the corresponding scorpionate. These compounds cross the intact blood–brain barrier in mice, with significant retention in the case of 4a and 5a. Using 4a as the lead structure, we have synthesized the functionalized complexes fac-[M{κ3-H(μ-H)B(timBu-pip)2}(CO)3] [M is Re (8), 99mTc (8a); timBu-pip is methyl[4-((2-methoxyphenyl)-1-piperazinyl)butyl](2-mercapto-1-methylimidazol-5-yl)methanamide] and fac-[M{κ 3-H(μ-H)B(timMe)(timBu-pip)}(CO)3] [M is Re (9), 99mTc (9a)] and evaluated their potential as radioactive probes for the targeting of brain 5-HT1A serotonergic receptors. The Re complexes exhibit excellent affinity [IC50=0.172 ± 0.003 nM (8); IC50=0.65 ± 0.01 nM (9)] for the 5-HT1A receptor. The radioactive congeners (99mTc) have shown an initial brain uptake of 1.38 ± 0.46%ID g−1 (8a) and 0.43 ± 0.12%ID g−1 (9a), but suffer from a relatively fast washout.  相似文献   

2.
A new azido derivative of 2,2′-dipicolylamine (Dpa), 2-azido-N,N-bis((pyridin-2-yl)methyl)ethanamine, (Dpa-N3) was readily prepared from the known 2-(bis(pyridin-2-ylmethyl)amino)ethanol (Dpa-OH). It was demonstrated that Dpa-N3 could be efficiently labeled with both [Re(CO)3(H2O)3]Br and [99mTc(H2O)3(CO)3]+ to give [Re(CO)3(Dpa-N3)]Br and [99mTc(CO)3(Dpa-N3)]+, respectively. Furthermore, Dpa-N3 was successfully coupled, on the solid phase, to a Peptide Nucleic Acid (PNA) oligomer (H-4-pentynoic acid-spacer-spacer-tgca-tgca-tgca-Lys-NH2; spacer = -NH-(CH2)2-O-(CH2)2-O-CH2-CO-) using the Cu(I)-catalyzed [2 + 3] azide/alkyne cycloaddition (Cu-AAC, often referred to as the prototypical “click” reaction) to give the Dpa-PNA oligomer. Subsequent labeling of Dpa-PNA with [99mTc(H2O)3(CO)3]+ afforded [99mTc(CO)3(Dpa-PNA)] in radiochemical yields > 90%. Partitioning experiments in a 1-octanol/water system were carried out to get more insight on the lipophilicity of [99mTc(CO)3(Dpa-N3)]+ and [99mTc(CO)3(Dpa-PNA)]. Both compounds were found rather hydrophilic (log Do/w values at pH = 7.4 are −0.50: [99mTc(CO)3(Dpa-N3)]+ and −0.85: [99mTc(CO)3(Dpa-PNA)]. Biodistribution studies of [99mTc(CO)3(Dpa-PNA)] in Wistar rats showed a very fast blood clearance (0.26 ± 0.1 SUV, 1 h p.i.) and modest accumulation in the kidneys (5.45 ± 0.45 SUV, 1 h p.i.). There was no significant activity in the thyroid and the stomach, demonstrating a high in vivo stability of the 99mTc-labeled Dpa-PNA conjugate.  相似文献   

3.
This report describes synthesis and evaluation of cationic complexes, [99mTc(CO)3(L)]+ (L = N-methoxyethyl-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L1), N-[(15-crown-5)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L2) and N-[(18-crown-6)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L3)) as potential radiotracers for heart imaging. Preliminary results from biodistribution studies in female adult BALB-c mice indicated that the cationic 99mTc(I)-tricarbonyl complex, [99mTc(CO)3(L2)]+, has a significant localization in the heart at 60 min post-injection. To understand the coordination chemistry of these bisphosphine ligands with the 99mTc(I)-tricarbonyl core, we prepared [Re(CO)3(L4)]Br (L4: N,N-bis[(2-diphenylphosphino)ethyl]methoxyethylamine) as a model compound. [Re(CO)3(L4)]Br has been characterized by elemental analysis, IR, ESI-MS, NMR (1H, 13C, 1H-1H COSY, and 1H-13C HMQC) methods, and X-ray crystallography. In solid state, [Re(CO)3(L4)]+ has a distorted octahedron coordination geometry with PNP occupying one facial plane. The chelator backbone adopts a “chair” conformation with phosphine-P atoms at equatorial positions and the amine-N at the apical site. In solution, [Re(CO)3(L4)]+ is able to maintain its cationic nature with no dissociation of carbonyl ligands or any of the three PNP donors.  相似文献   

4.
Accumulation of radiopharmaceuticals in the liver is frequently observed and represents in general a limiting factor when developing novel labeled compounds for any purpose in nuclear medicine. Aiming at the treatment of liver cancer with radiopharmaceuticals, such accumulation is desired but the compounds have to remain in the liver over an extended time period rather than being washed out or redistributed over time in the whole body. Lipiodol is known to remain in the liver and we present here a study for the preparation of 186Re and 99mTc labeled Lipiodol surrogates expected to behave similarly. We have synthesized two bidentate and two tridentate ligands conjugated to a pendant C18 chain as well as their corresponding fac-[Re(CO)3]+ and fac-[Tc(CO)3]+ complexes. Three of the rhenium complexes have been structurally characterized. Labelling with [186Re(OH2)3(CO)3]+ and [99mTc(OH2)3(CO)3]+, respectively, gave yields in the range of 90%. The complexes could be extracted into Lipiodol due to their high lipophilicity and close structural relationship with the major components of Lipiodol. The complexes are stable in water and in Lipiodol for more than 24 h. These Lipiodol surrogates present new low-valent technetium and rhenium complexes for applications in liver cancer imaging and therapy.  相似文献   

5.
The ciprofloxacin dithiocarbamate (CPFXDTC) was radiolabeled with [99mTc(CO)3(H2O)3]+ intermediate to form the 99mTc(CO)3–CPFXDTC complex in high yield. The 99mTc(CO)3–CPFXDTC complex was characterized by HPLC and its stability in serum was studied. Its partition coefficient indicated that it was a lipophilic complex. The bacterial binding efficiency of 99mTc(CO)3–CPFXDTC was almost the same as that of 99mTcN–CPFXDTC, and was higher than that of 99mTc–ciprofloxacin. Biodistribution results in induced infection mice showed 99mTc(CO)3–CPFXDTC had higher uptake at the sites of infection and better abscess/blood and abscess/muscle ratios than those of 99mTc–ciprofloxacin and 99mTcN–CPFXDTC. Single photon emission computed tomography (SPECT) static imaging study in infected rabbits demonstrated the uptake in the left thigh infection lesion was observable, while no accumulation in the right thigh muscle was found. These results suggested 99mTc(CO)3–CPFXDTC would be a promising candidate for further evaluation as infection imaging agent.  相似文献   

6.

Abstract  

Aiming to apply the multivalency concept to melanoma imaging, we have assessed the in vivo melanocortin type 1 receptor (MC1R)-targeting properties of 99mTc(I)-labeled homobivalent peptide conjugates which contain copies of the α-melanocyte-stimulating hormone (α-MSH) analog [Ac-Nle4, Asp5, d-Phe7, Lys11]α-MSH4–11 separated by linkers of different length (L 2 nine atoms and L 3 14 atoms). The MC1R-binding affinity of L 2 and L 3 is significantly higher than that of the monovalent conjugate L 1 . Metallation of these conjugates yielded the complexes fac-[M(CO)3(k3-L)]+ (M is 99mTc/Re; 1/1a, L is L 1 ; 2/2a, L is L 2 ; 3/3a, L is L 3 ), with IC50 values in the subnanomolar and nanomolar range. The MC1R-mediated internalization of 2 and 3 is higher than that of 1 in B16F1 melanoma cells. Biodistribution studies in melanoma-bearing mice have shown low nonspecific accumulation with a tumor uptake that correlates with IC50 values. However, no correlation between tumor uptake and valency was found. Nevertheless, 2 displayed the highest tumor retention, and the best tumor to nontarget organ ratios.  相似文献   

7.
Classical 99mTc(CO)3+ and novel 99mTc(CO)2(NO)2+ cores complexed with flavonol derivatives were prepared. Autoradiography of postmortem AD transgenic mice (Tg C57, APP, PS1 12-month-old) brain section confirmed the binding property of [99mTc(CO)3+-3-OH-flavone]0 to Aβ(1–40) aggregates, while the novel 99mTc(CO)2(NO)2+ labeled compounds showed no binding sites in AD transgenic mice sections. Intravenous administration of [99mTc(CO)3+-3-OH-flavone]0 resulted in moderate brain uptake (0.48 ± 0.05%ID/g) at 5 min post-injection and slow clearance from the brain issues in 2 h post-injection (120 min: 0.39 ± 0.08%ID/g). Then an Aβ(1–40)-receptor-targeted Re(CO)3+-3-OH-flavone, was prepared to identify the structure of the technetium complex. UV–vis absorption and fluorescence emission properties have been studied at room temperature in order to determine the natures of the lowest electronically excited states of Re(CO)3+-3-OH-flavone and the ligand. The fluorescent rhenium complex Re(CO)3+-3-OH-flavone showed high affinity for Aβ(1–40) aggregates in vitro by fluorescence spectra (dissociation constant (Kd) = 11.16 nM). In conclusion, the results suggested that 99mTc(CO)3+-3-OH-flavone should be a suitable candidate as Aβ plaque SPECT imaging agent for AD.  相似文献   

8.
Early detection of primary melanoma tumors is essential because there is no effective treatment for metastatic melanoma. Several linear and cyclic radiolabeled α-melanocyte stimulating hormone (α-MSH) analogs have been proposed to target the melanocortin type 1 receptor (MC1R) overexpressed in melanoma. The compact structure of a rhenium-cyclized α-MSH analog (Re-CCMSH) significantly enhanced its in vivo tumor uptake and retention. Melanotan II (MT-II), a cyclic lactam analog of α-MSH (Ac-Nle-cyclo[Asp-His-dPhe-Arg-Trp-Lys]-NH2]), is a very potent and stable agonist peptide largely used in the characterization of melanocortin receptors. Taking advantage of the superior biological features associated with the MT-II cyclic peptide, we assessed the effect of lactam-based cyclization on the tumor-seeking properties of α-MSH analogs by comparing the pharmacokinetics profile of the 99mTc-labeled cyclic peptide βAla-Nle-cyclo[Asp-His-d-Phe-Arg-Trp-Lys]-NH2 with that of the linear analog βAla-Nle-Asp-His-dPhe-Arg-Trp-Lys-NH2 in melanoma-bearing mice. We have synthesized and coupled the linear and cyclic peptides to a bifunctional chelator containing a pyrazolyl-diamine backbone (pz) through the amino group of βAla, and the resulting pz–peptide conjugates were reacted with the fac-[99mTc(CO)3]+ moiety. The 99mTc(CO)3-labeled conjugates were obtained in high yield, high specific activity, and high radiochemical purity. The cyclic 99mTc(CO)3-labeled conjugate presents a remarkable internalization (87.1% of receptor-bound tracer and 50.5% of total applied activity, after 6 h at 37 °C) and cellular retention (only 24.7% released from the cells after 5 h) in murine melanoma B16F1 cells. A significant tumor uptake and retention was obtained in melanoma-bearing C57BL6 mice for the cyclic radioconjugate [9.26 ± 0.83 and 11.31 ± 1.83% ID/g at 1 and 4 h after injection, respectively]. The linear 99mTc(CO)3-pz–peptide presented lower values for both cellular internalization and tumor uptake. Receptor blocking studies with the potent (Nle4,dPhe7)-αMSH agonist demonstrated the specificity of the radioconjugates to MC1R (74.8 and 44.5% reduction of tumor uptake at 4 h after injection for cyclic and linear radioconjugates, respectively).  相似文献   

9.
The chlorambucil l-histidine conjugate was synthesized and radiolabeled with [99mTc(CO)3]+ core to form the 99mTc(CO)3(His–CB) complex. The radiochemical purity of the complex was over 90%. It had good hydrophilicity and was stable at room temperature. The high initial tumor uptake with certain retention, fast clearance from background, good tumor/non-tumor ratios and satisfactory scintigraphic images highlighted the potential of 99mTc(CO)3(His–CB) as a tumor imaging agent.  相似文献   

10.
The somatostatin receptor subtype 2 (SSTR2) is often highly expressed on neuroendocrine tumors (NETs), making it a popular in vivo target for diagnostic and therapeutic approaches aimed toward management of NETs. In this work, an antagonist peptide (sst2-ANT) with high affinity for SSTR2 was modified at the N-terminus with a novel [N,S,O] bifunctional chelator (2) designed for tridentate chelation of rhenium(I) and technetium(I) tricarbonyl cores, [Re(CO)3]+ and [99mTc][Tc(CO)3]+. The chelator-peptide conjugation was performed via a Cu(I)-assisted click reaction of the alkyne-bearing chelator (2) with an azide-functionalized sst2-ANT peptide (3), to yield NSO-sst2-ANT (4). Two synthetic methods were used to prepare Re-4 at the macroscopic scale, which differed based on the relative timing of the click conjugation to the [Re(CO)3]+ complexation by 2. The resulting products demonstrated the expected molecular mass and nanomolar in vitro SSTR2 affinity (IC50 values under 30?nM, AR42J cells, [125I]iodo-Tyr11-somatostatin-14 radioligand standard). However, a difference in their HPLC retention times suggested a difference in metal coordination modes, which was attributed to a competing N-triazole donor ligand formed during click conjugation. Surprisingly, the radiotracer scale reaction of [99mTc][Tc(OH2)3(CO)3]+ (99mTc; t½?=?6?h, 141?keV γ) with 4 formed a third product, distinct from the Re analogues, making this one of the unusual cases in which Re and Tc chemistries are not well matched. Nevertheless, the [99mTc]Tc-4 product demonstrated excellent in vitro stability to challenges by cysteine and histidine (≥98% intact through 24?h), along with 75% stability in mouse serum through 4?h. In vivo biodistribution and microSPECT/CT imaging studies performed in AR42J tumor-bearing mice revealed improved clearance of this radiotracer in comparison to a similar [99mTc][Tc(CO)3]-labeled sst2-ANT derivative previously studied. Yet despite having adequate tumor uptake at 1?h (4.9% ID/g), tumor uptake was not blocked by co-administration of a receptor-saturating dose of SS-14. Aimed toward realignment of the Re and Tc product structures, future efforts should include distancing the alkyne group from the intended donor atoms of the chelator, to reduce the coordination options available to the [M(CO)3]+ core (M?=?Re, 99mTc) by disfavoring involvement of the N-triazole.  相似文献   

11.
Angiogenesis imaging agents for single photon emission computed tomography (SPECT) play a role in diagnosing tumor-induced angiogenesis as well as tumor metastasis. We synthesized and evaluated radiolabeled RGD glycopeptides by incorporation of the [99mTc(CO)3(H2O)3]+. 99mTc labeled glucosamino-D-c(RGDfK) ([99mTc]2) was prepared in 90–93% radiochemical yields (decay corrected). In vitro cell binding assays demonstrated selective binding [99mTc]2 to human umbilical vein endothelial (HUVE) cells, with inhibition of binding to 37.3% of control levels by 10 μM of cold authentic compounds. In addition, [99mTc]2 was shown to have high binding affinity to purified αvβ3 integrin (IC50 = 1.5 nM). These results suggest that these radiolabeled RGD glycopeptides may have value for non-invasive assessment of angiogenesis.  相似文献   

12.
Bombesins (BN) containing 99mTc ‘4 + 1’ complexes may be useful to detect tumors expressing the gastrin-releasing peptide receptor (GRPR). Derivatives of the formula [99mTc(NS3R)(L2-BNst)] were synthesized, in which Tc(III) is coordinated by an isocyanide L2-BNst bearing the peptide (BNst = βAla-βAla-Gln-Trp-Ala-Val-Gly-His-Cha-Nle-NH2) and a tetradentate chelator NS3R. NS3R consists of 2,2′,2″-nitrilotriethanethiol (NS3) bearing a crown ether (NS3crown), an aliphatic amine (NS3en) and a tricarboxylic acid (NS3(COOH)3). Non-radioactive Re compounds were prepared and analysed by electrospray ionization mass spectrometry. The structural similarity to the 99mTc conjugates was demonstrated by their identical HPLC elution profiles. The lipophilicity of [99mTc(NS3R)(L2-BNst)] decreased depending on the coligands NS3crown (log DO/W, pH = 7.4, 0.98 ± 0.11), NS3en (− 0.49 ± 0.07) and NS3(COOH)3 (− 2.01 ± 0.09). Biodistribution in normal rats was characterized by an increasing kidney uptake and a decreasing uptake into the liver corresponding to the reduced lipophilicity of the conjugates. The pancreatic uptake expressed by the organ/blood ratio of standardized uptake values at 60 min p.i. in rats was 8.6 ± 1.2 for [99mTc(NS3en)(L2-BNst)] and higher compared to the other conjugates. The pancreas/liver ratio of the SUV at 60 min p.i. in rats was highest for [99mTc(NS3(COOH)3)(L2-BNst)] at 8.4 ± 1.3. [99mTc(NS3en)(L2-BNst)] was further studied in tumor-bearing mice and its pancreas/blood and pancreas/liver ratios were lower, however the pancreas/kidney ratios were higher in mice compared to rats. The activity uptake of [99mTc(NS3en)(L2-BNst)] into the PC-3 tumor xenografts was low (%ID/g: 0.83 ± 0.18 at 60 min; SUV: 0.21 ± 0.05 at 60 min) but specific.  相似文献   

13.
Two somatostatin analogues, [99mTc]Demotide and [99mTc]Demotate 4, were compared with [99mTc]Demotate 1, a previously reported somatostatin receptor subtype 2 (sst2) targeting tracer. Conjugates were prepared by coupling an open‐chain tetraamine chelator to D ‐Phe1 of [Tyr3]‐octreotide or [Tyr3]‐octreotate, respectively, via a p‐benzylaminodiglycolic acid spacer adopting solid‐phase peptide synthesis techniques. Peptide conjugates were collected in a highly pure form after chromatographic purification. Eventually, [99mTc]Demotide and [99mTc]Demotate 4 were obtained in ~1 Ci/µmol specific activity and >96% purity after labeling under alkaline conditions. Demotide and Demotate 4 exhibited similar high binding affinities for the sst2 expressed in AR4‐2J cells with IC50 values 0.16 and 0.10 nM, respectively. The (radio)metallated analogues [99mTc]Demotide and [99mTc]Demotate 4 showed equally high affinities to the sst2 during saturation binding assays in AR4‐2J cell membranes (Kds 0.08 and 0.07 nM, respectively). During incubation at 37 °C with AR4‐2J cells, the radiopeptides internalized effectively via a receptor‐mediated process, with [99mTc]Demotate 4 exhibiting a faster internalization rate than [99mTc]Demotide. After injection in athymic mice bearing sst2‐expressing AR4‐2J tumors, the radiotracers showed high and specific uptake in the tumor (>25%ID/g at 1 h) and in the sst2–positive organs. However, both [99mTc]Demotide and [99mTc]Demotate 4 showed unfavorably higher background activity, especially in the abdomen, in comparison to [99mTc]Demotate 1 and are, therefore, less suited than [99mTc]Demotate 1 for sst2‐targeted tumor imaging in man. Copyright © 2005 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
The 16-mer peptide nucleic acid sequence H-A GAT CAT GCC CGG CAT-Lys-NH2 (1), which is complementary to the translation start region of the N-myc oncogene messenger RNA, was synthesized and conjugated to a pyrazolyl diamine bifunctional chelator (pz). The novel conjugate pz-A GAT CAT GCC CGG CAT-Lys-NH2 (2) was labeled with technetium tricarbonyl, yielding quantitatively the complex fac-[99mTc(CO)33-pz-A GAT CAT GCC CGG CAT-Lys-NH2)]2+ (4). Complex 4 was obtained with high radiochemical purity and high specific activity, revealing high stability in human serum and in cell culture medium. The identity of 4 was confirmed by comparing its reversed-phase high performance liquid chromatography profile with that of the rhenium analog fac-[Re(CO)33-pz-A GAT CAT GCC CGG CAT-Lys-NH2)]2+ (3), prepared by conjugation of fac-[Re(CO)3(3,5-Me2pz(CH2)2N((CH2)3COOH)(CH2)2NH2)]+ to 1, using solid-phase techniques. UV melting experiments of 1 and 3 with the complementary DNA sequence led to the formation of stable duplexes, indicating that the conjugation of 1 to the pyrazolyl chelator and to the metal fragment fac-[M(CO)3]+ did not affect the recognition of the complementary sequence as well as the duplex stability. For a first screening, SH-SY5Y human neuroblastoma cells, which express N-myc, were treated with 4. The results show that 4 internalizes (7% of the activity goes into the cells, after 4 h at 37 °C), presenting also a relatively high cellular retention (only 40% of internalized activity is released from the cells after 5 h). An erratum to this article can be found at  相似文献   

15.
The reaction of Re(CO)5Cl with o- or p-N-(nitrophenyl)ethylenediaminediacetic acid (H2L1, H2L2) and o- or p-N-(nitrophenyl)propylenediaminediacetic acid (H2L3, H2L4) in methanol leads to the formation of stable anionic [Et3NH][Re(CO)3(L)] · H2O complexes 1-4. These compounds have been characterized by means of IR, mass spectrometry, elemental analysis, NMR and conductimetry, as well as X-ray crystallography for 2 and 3. The [Re(CO)3]+ moiety is coordinated via the nitrogen of the iminodiacetic acid unit and two oxygens of monodentate carboxylate groups. In each case, the nitro group of the aromatic ring remains uncoordinated. The analogous technetium-99m complexes 1′ and 3′ were also prepared quantitatively by the reaction of H2L1 and H2L3, respectively, with the fac-[99mTc(CO)3(H2O)3]+ precursor in ethanol. The corresponding Re and 99mTc compounds were shown to possess the same structure by means of HPLC studies. The high affinity of these ligands for the Tc(I) or Re(I) core, coupled with the easiness of their derivatization (by reduction of the nitro group in amino group), implies that the utilization of this ligand system to develop target-specific radiopharmaceuticals for diagnosis and therapy is promising.  相似文献   

16.

Abstract  

Auger-emitting radionuclides such as 99mTc have been the focus of recent studies aiming at finding more selective therapeutic approaches. To explore the potential usefulness of 99mTc as an Auger emitter, we have synthesized and biologically evaluated novel multifunctional structures comprising (1) a pyrazolyl-diamine framework bearing a set of donor atoms to stabilize the [M(CO)3]+ (M is Re, 99mTc) core; (2) a DNA intercalating moiety of the acridine orange type to ensure close proximity of the radionuclide to DNA and to follow the internalization and subcellular trafficking of the compounds by confocal fluorescence microscopy; and (3) a bombesin (BBN) analogue of the type X-BBN[7-14] (where X is SGS, GGG) to provide specificity towards cells expressing the gastrin releasing peptide receptor (GRPr). Of the evaluated 99mTc complexes, Tc 3 containing the GGG-BBN[7-14] peptide showed the highest cellular internalization in GRPr-positive PC3 human prostate tumor cells, presenting a remarkably high nuclear uptake in the same cell line. Live-cell confocal imaging microscopy studies with the congener Re complex, Re 3 , showed a considerable accumulation of fluorescence in the nucleus, with kinetics of uptake similar to that exhibited by Tc 3 . Together, these data show that the acridine orange intercalator and the metal fragment are colocalized in the nucleus, which indicates that they remain connected despite the lysosomal degradation of Tc 3 /Re 3 . These compounds are the first examples of 99mTc bioconjugates that combine specific cell targeting with nuclear internalization, a crucial issue to explore use of 99mTc in Auger therapy.  相似文献   

17.
The mesenchymal-epithelial transition factor (c-Met), which is related to tumor cell growth, angiogenesis and metastases, is known to be overexpressed in several tumor types. In this study, we synthesized technetium-99m labeled 1,2,3-triazole-4-yl c-Met binding peptide (cMBP) derivatives, prepared by solid phase peptide synthesis and the ‘click-to-chelate’ protocol for the introduction of tricarbonyl technetium-99m, as a potential c-Met receptor kinase positive tumor imaging agent, and evaluated their in vitro c-Met binding affinity, cellular uptake, and stability. The 99mTc labeled cMBP derivatives ([99mTc(CO)3]12, [99mTc(CO)3]13, and [99mTc(CO)3]14) were prepared in 85-90% radiochemical yields. The cold surrogate cMBP derivatives, [Re(CO)3]12, [Re(CO)3]13, and [Re(CO)3]14, were shown to have high binding affinities (0.13 μM, 0.06 μM, and 0.16 μM, respectively) to a purified cMet/Fc chimeric recombinant protein. In addition, the in vitro cellular uptake and inhibition studies demonstrated the high specific binding of these 99mTc labeled cMBP derivatives ([99mTc(CO)3]12–14) to c-Met receptor positive U87MG cells.  相似文献   

18.
Radiolabeling of nanoparticles (NPs) has been performed for a variety of reasons, such as for studying pharmacokinetics, for imaging, or for therapy. Here, we describe the in vitro and in vivo evaluation of DTPA-derivatized lipid-based NP (DTPA-NP) radiolabeled with different radiometals, including 111In and 99mTc, for single-photon emission computed tomography (SPECT), 68Ga for positron emission tomography (PET), and 177Lu for therapeutic applications. PEGylated DTPA-NP with varying DTPA amounts, different composition, and size were radiolabeled with 111In, 177Lu, and 68Ga, using various buffers. 99mTc-labeling was performed directly and by using the carbonyl aquaion, [99mTc(H2O)3(CO)3]+. Stability was tested and biodistribution evaluated. High labeling yields (>90%) were achieved for all radionuclides and different liposomal formulations. Specific activities (SAs) were highest for 111In (>4 MBq/μg liposome), followed by 68Ga and 177Lu; for 99mTc, high labeling yields and SA were only achieved by using [99mTc(H2O)3(CO)3]+. Stability toward DTPA/histidine and in serum was high (>80 % RCP, 24 hours postpreparation).). Biodistribution in Lewis rats revealed no significant differences between NP in terms of DTPA loading and particle composition; however, different uptake patterns were found between the radionuclides used. We observed lower retention in blood (<3.3 %ID/g) and lower liver uptake (< 2.7 %ID/g) for 99mTc- and 68Ga, compared to 111In-NP (blood, <4 %ID/g; liver, <3.6 %ID/g). Imaging potential was shown by both PET magnetic resonance imaging fusion imaging and SPECT imaging. Overall, our study shows that PEGylated DTPA-NP are suitable for radiolabeling studies with a variety of radiometals, thereby achieving high SA suitable for targeting applications.  相似文献   

19.
We have developed four 99mTc(CO)3-labeled lipophilic tracers as potential radiolabeling agents for cells based on a hexadecyl tail. 99mTc(CO)3-hexadecylamino-N,N′-diacetic acid (negatively charged), 99mTc(CO)3-hexadecylamino-N-α-picolyl-N′-acetic acid (uncharged), 99mTc(CO)3-N,N′-dipicolylhexadecylamine (positively charged), 99mTc(CO)3-N-hexadecylaminoethyl-N′-aminoethylamine (positively charged) were prepared in a radiolabeling yield: >90%. Preliminary cell uptake studies were performed in mixed blood cells with or without plasma and were compared with 99mTc-d,l-HMPAO and [18F]FDG. In plasma-free blood cells, maximum uptake (78%) was obtained for 99mTc(CO)3-N-hexadecylaminoethyl-N′-aminoethylamine after 60 min incubation (compared to 55% and 23% for 99mTc-d,l-HMPAO and [18F]FDG, respectively) while in plasma-rich medium, 99mTc(CO)3-N,N′-dipicolylhexadecylamine was best bound (54%, similar to the binding of 99mTc-d,l-HMPAO). Biodistribution in normal mice showed mainly hepatobiliary clearance of the agents and initial high lung uptake. The radiolabeled compounds showed good blood clearance with maximally 7.9% injected dose per gram at 60 min post injection. While the least lipophilic agent (99mTc(CO)3-N,N′-dipicolylhexadecylamine, log P = 1.3) showed the best cell uptake, there appears to be no direct correlation between lipophilicity and tracer uptake in mixed blood cells. In view of its comparable cell uptake to well known cell labeling agent 99mTc-d,l-HMPAO, 99mTc(CO)3-N,N′-dipicolylhexadecylamine merits further evaluation as a potential cell labeling agent.  相似文献   

20.
Aiming at the development of 99mTc-based infection-specific imaging agents, the synthesis and characterization of rhenium and technetium-99m tricarbonyl complexes with derivatized ciprofloxacin and norfloxacin is hereby reported. The ligands were prepared by coupling the tridentate chelator picolylamino-N,N-diacetic acid (PADA) with the piperazinyl (NH) nitrogen of ciprofloxacin or norfloxacin, through the employment of the PADA anhydride. The corresponding rhenium complexes were synthesized using the fac-[NEt4]2[ReBr3(CO)3] precursor and were fully characterized by elemental analysis and NMR spectroscopy. X-ray crystallography of the ciprofloxacin complex showed that the geometry about rhenium is distorted octahedral defined by the NNO donor atom set of the tridentate chelator and the three carbonyl groups. The analogous technetium-99m complexes were prepared quantitatively through the use of the fac-[99mTc(H2O)3(CO)3]+ precursor and their structure was established by comparative HPLC studies using the well-characterized rhenium complexes as reference. Preliminary studies with the technetium-99m complexes showed high bacterial uptake in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号