首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
[Tyr6]‐γ2‐MSH(6–12) with a short effecting time of about 20 min is one of the most potent rMrgC receptor agonists. To possibly increase its potency and metabolic stability, a series of analogues were prepared by replacing the Tyr6 residue with the non‐canonical amino acids 3‐(1‐naphtyl)‐L ‐alanine, 4‐fluoro‐L ‐phenylalanine, 4‐methoxy‐L ‐phenylalanine and 3‐nitro‐L ‐tyrosine. Dose‐dependent nociceptive assays performed in conscious rats by intrathecal injection of the MSH peptides showed [Tyr6]‐γ2‐MSH(6–12) hyperalgesic effects at low doses (5–20 nmol) and analgesia at high doses (100–200 nmol). This analgesic activity is fully reversed by the kyotorphin receptor‐specific antagonist Leu–Arg. For the two analogues containing in position 6, 4‐fluoro‐L ‐phenylalanine and 3‐nitro‐L ‐tyrosine, a hyperalgesic activity was not observed, while the 3‐(1‐naphtyl)‐L ‐alanine analogue at 10 nmol dose was found to induce hyperalgesia at a potency very similar to γ2‐MSH(6–12), but with longer duration of the effect. Finally, the 4‐methoxy‐L ‐phenylalanine analogue (0.5 nmol) showed greatly improved hyperalgesic activity and prolonged effects compared to the parent [Tyr6]‐γ2‐MSH(6–12) compound. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
The somatostatin receptor subtype 2 (SSTR2) is often highly expressed on neuroendocrine tumors (NETs), making it a popular in vivo target for diagnostic and therapeutic approaches aimed toward management of NETs. In this work, an antagonist peptide (sst2-ANT) with high affinity for SSTR2 was modified at the N-terminus with a novel [N,S,O] bifunctional chelator (2) designed for tridentate chelation of rhenium(I) and technetium(I) tricarbonyl cores, [Re(CO)3]+ and [99mTc][Tc(CO)3]+. The chelator-peptide conjugation was performed via a Cu(I)-assisted click reaction of the alkyne-bearing chelator (2) with an azide-functionalized sst2-ANT peptide (3), to yield NSO-sst2-ANT (4). Two synthetic methods were used to prepare Re-4 at the macroscopic scale, which differed based on the relative timing of the click conjugation to the [Re(CO)3]+ complexation by 2. The resulting products demonstrated the expected molecular mass and nanomolar in vitro SSTR2 affinity (IC50 values under 30?nM, AR42J cells, [125I]iodo-Tyr11-somatostatin-14 radioligand standard). However, a difference in their HPLC retention times suggested a difference in metal coordination modes, which was attributed to a competing N-triazole donor ligand formed during click conjugation. Surprisingly, the radiotracer scale reaction of [99mTc][Tc(OH2)3(CO)3]+ (99mTc; t½?=?6?h, 141?keV γ) with 4 formed a third product, distinct from the Re analogues, making this one of the unusual cases in which Re and Tc chemistries are not well matched. Nevertheless, the [99mTc]Tc-4 product demonstrated excellent in vitro stability to challenges by cysteine and histidine (≥98% intact through 24?h), along with 75% stability in mouse serum through 4?h. In vivo biodistribution and microSPECT/CT imaging studies performed in AR42J tumor-bearing mice revealed improved clearance of this radiotracer in comparison to a similar [99mTc][Tc(CO)3]-labeled sst2-ANT derivative previously studied. Yet despite having adequate tumor uptake at 1?h (4.9% ID/g), tumor uptake was not blocked by co-administration of a receptor-saturating dose of SS-14. Aimed toward realignment of the Re and Tc product structures, future efforts should include distancing the alkyne group from the intended donor atoms of the chelator, to reduce the coordination options available to the [M(CO)3]+ core (M?=?Re, 99mTc) by disfavoring involvement of the N-triazole.  相似文献   

3.
Radiolabeled somatostatin analogs have become powerful tools in the diagnosis and staging of neuroendocrine tumors, which express somatostatin receptors. The aim of this study was to evaluate a new somatostatin analog, 6‐hydrazinopyridine‐3‐carboxylic acid‐Ser3‐octreotate (HYNIC‐SATE) radiolabeled with 99mTc, using ethylenediamine‐N,N′‐diacetic acid and tricine as coligands, to be used as a radiopharmaceutical for the in vivo imaging of somatostatin receptor subtype 2 (SSTR2)‐positive tumor. Synthesis of the peptide was carried out on a solid phase using a standard Fmoc strategy. Peptide conjugate affinities for SSTR2 were determined by receptor binding affinity on rat brain cortex and C6 cell membranes. Internalization rate of 99mTc‐HYNIC‐SATE was studied in SSTR2‐expressing C6 cells that were used for intracranial tumor studies in rat brain. A reproducible in vivo C6 glioma model was developed in Sprague–Dawley rat and confirmed by histopathology and immunohistochemical analysis. Biodistribution and imaging properties of this new radiopeptide were also studied in C6 tumor‐bearing rats. Radiolabeling was performed at high specific activities, with a radiochemical purity of >96%. Peptide conjugate showed high affinity binding for SSTR2 (HYNIC‐SATE IC50 = 1.60 ± 0.05 n m ) and specific internalization into rat C6 cells. After administration of 99mTc‐HYNIC‐SATE in C6 glioma‐bearing rats, a receptor specific uptake of radioactivity was observed in SSTR‐positive organs and in the implanted intracranial tumor and rapid excretion from nontarget tissues via kidneys. 99mTc‐HYNIC‐SATE is a new receptor‐specific radiopeptide for targeting SSTR2‐positive brain tumor and might be of great promise in the scintigraphy of SSTR2‐positive tumors. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
N‐[1‐(4‐(4‐fluorophenyl)‐2,6‐dioxocyclohexylidene)ethyl] (Fde) protected amino acids have been prepared and applied in solid‐phase peptide synthesis monitored by gel‐phase 19F NMR spectroscopy. The Fde protective group could be cleaved with 2% hydrazine or 5% hydroxylamine solution in DMF as determined with gel‐phase 19F NMR spectroscopy. The dipeptide Ac‐L ‐Val‐L ‐Val‐NH2 12 was constructed using Fde‐L ‐Val‐OH and no noticeable racemization took place during the amino acid coupling with N,N′‐diisopropylcarbodiimide and 1‐hydroxy‐7‐azabenzotriazole or Fde deblocking. To extend the scope of Fde protection, the hydrophobic nonapeptide LLLLTVLTV from the signal sequence of mucin MUC1 was successfully prepared using Fde‐L ‐Leu‐OH at diagnostic positions. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

The pharmacological profile and localization of somatostatin (SRIF) receptors were determined in rat, monkey and human cerebellum. In rat cerebellar cortex, low ss1/sst4, intermediate sst2 and very high sst3 receptor mRNA levels were found, sst1 mRNA was also expressed in the deep cerebellar nuclei. [125I]Tyr3-octreotide binding sites in cerebellar membranes correlated with recombinant sst2, but not with sst5 or sst3 receptors and were found in the molecular layer of the cerebellum. [125I]CGP 23996 (in Na+-buffer) binding in rat cerebellum correlated with sst1 or sst4, but not with sst2, sst3 or sst5 receptor binding. Similar data were obtained in rhesus monkey cerebellum. mRNAs for all five receptors were found in the granule cell layer of the human cerebellum and/or in the dentate nucleus. [125I]Tyr3-octreotide binding was strong in the molecular layer and correlated with that of recombinant sst2 receptors, but not with sst3 or sst5 receptors. [125I]CGP 23996 (in Mg++-buffer) binding was heterogeneous (about 75%. to sst2 and 25% to sst1 and/or sst4 receptors). The molecular and granular layers were equally and the dentate nucleus strongly labeled. Thus. SRIF receptors of the sst2, sst1 and/or sst4 subtype are present in the rat, monkey and human cerebellum. In the latter two species, the sst2 type appears to be predominant. Surprisingly, the high expression of sst3 receptor mRNA is not supported by radioligand binding data in any of the species studied. The reason for this discrepancy remains to be elucidated.  相似文献   

6.
The increasing interest in click chemistry and its use to stabilize turn structures led us to compare the propensity for β‐turn stabilization of different analogs designed as mimics of the β‐turn structure found in tendamistat. The β‐turn conformation of linear β‐amino acid‐containing peptides and triazole‐cyclized analogs were compared to ‘conventional’ lactam‐ and disulfide‐bridged hexapeptide analogs. Their 3D structures and their propensity to fold in β‐turns in solution, and for those not structured in solution in the presence of α‐amylase, were analyzed by NMR spectroscopy and by restrained molecular dynamics with energy minimization. The linear tetrapeptide Ac‐Ser‐Trp‐Arg‐Tyr‐NH2 and both the amide bond‐cyclized, c[Pro‐Ser‐Trp‐Arg‐Tyr‐D ‐Ala] and the disulfide‐bridged, Ac‐c[Cys‐Ser‐Trp‐Arg‐Tyr‐Cys]‐NH2 hexapeptides adopt dominantly in solution a β‐turn conformation closely related to the one observed in tendamistat. On the contrary, the β‐amino acid‐containing peptides such as Ac‐(R)‐β3‐hSer‐(S)‐Trp‐(S)‐β3‐hArg‐(S)‐β3‐hTyr‐NH2, and the triazole cyclic peptide, c[Lys‐Ser‐Trp‐Arg‐Tyr‐βtA]‐NH2, both specifically designed to mimic this β‐turn, do not adopt stable structures in solution and do not show any characteristics of β‐turn conformation. However, these unstructured peptides specifically interact in the active site of α‐amylase, as shown by TrNOESY and saturation transfer difference NMR experiments performed in the presence of the enzyme, and are displaced by acarbose, a specific α‐amylase inhibitor. Thus, in contrast to amide‐cyclized or disulfide‐bridged hexapeptides, β‐amino acid‐containing peptides and click‐cyclized peptides may not be regarded as β‐turn stabilizers, but can be considered as potential β‐turn inducers. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
A procedure for the synthesis of a11C‐labeled oligopeptide containing [1‐11C]1,2,3,4‐tetrahydro‐β‐carboline‐3‐carboxylic acid ([1‐11C]Tpi) from the corresponding Trp?HCl‐containing peptides has been developed involving a Pictet‐Spengler reaction with [11C]formaldehyde. The synthesis of [1‐11C]Tpi from Trp and [11C]formaldehyde was examined as a model reaction with the aim of developing a facile and effective method for the labeling of peptides with carbon‐11. The Pictet‐Spengler reaction of Trp and [11C]formaldehyde in acidic media (TsOH or HCl) afforded the desired [1‐11C]Tpi in a moderate radiochemical yield. Herein, the application of a Pictet‐Spengler reaction to an aqueous solution of Trp?HCl gave the desired product with a radiochemical yield of 45.2%. The RGD peptide cyclo[Arg‐Gly‐Asp‐D‐Tyr‐Lys] was then selected as a substrate for the labeling reaction with [11C]formaldehyde. The radiolabeling of a Trp?HCl‐containing RGD peptide using the Pictet‐Spengler reaction was successful. Furthermore, the remote‐controlled synthesis of a [1‐11C]Tpi‐containing RGD peptide was attempted by using an automatic production system to generate [11C]CH3I. The radiochemical yield of the [1‐11C]Tpi‐containing RGD at the end of synthesis (EOS) was 5.9 ± 1.9% (n = 4), for a total synthesis time of about 35 min. The specific activity was 85.7 ± 9.4 GBq/µmol at the EOS. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
The ratio of two biosynthetic pathways was estimated, the C5 and Shemin pathways, to δ‐aminolevulinic acid (ALA, a biosynthetic intermediate of tetrapyrrole) from the 13C‐enrichment ratios (13C‐ER) at the carbon atoms of chl a (after conversion to methyl pheophorbide a) biosynthesized by Euglena gracilis G. A. Klebs when l ‐[3‐13C]alanine was used as a carbon source. On the basis of these estimations, we confirmed that ALA was efficiently biosynthesized via both the C5 and Shemin pathways in the plastids of E. gracilis, and we determined that the ratio of ALA biosynthesis via the Shemin pathway was increased in the ratio of 14%–67%, compared with that in our previous d ‐[1‐13C]glucose feeding experiment ( Iida et al. 2002 ). This carbon source dependence of the contributions of the two biosynthetic pathways might be related to activation of gluconeogenesis by the amino acid substrate. The methoxy carbon of the methoxycarbonyl group at C‐132 of chl a was labeled with the 13C‐carbon of l ‐[methyl13C]methionine derived from l ‐[3‐13C]alanine via [2‐13C]acetyl coenzyme A (CoA), through the atypical tricarboxylic acid (TCA) cycle, gluconeogenesis, and l‐ [3‐13C]serine. The phytyl moiety of chl a was also labeled on C‐P2, C‐P31, C‐P4, C‐P6, C‐P71, C‐P8, C‐P10, C‐P111, C‐P12, C‐P14, C‐P151, and C‐P16 from 13C‐isoprene (2‐[1,2‐methyl,3‐13C3]methyl‐1,3‐butadiene) generated from l ‐[3‐13C]alanine via [2‐13C]acetyl CoA.  相似文献   

9.
The D4 dopamine receptor belongs to the D2‐like family of dopamine receptors, and its exact regional distribution in the central nervous system is still a matter of considerable debate. The availability of a selective radioligand for the D4 receptor with suitable properties for positron emission tomography (PET) would help resolve issues of D4 receptor localization in the brain, and the presumed diurnal change of expressed protein in the eye and pineal gland. We report here on in vitro and in vivo characteristics of the high‐affinity D4 receptor‐selective ligand N‐{2‐[4‐(3‐cyanopyridin‐2‐yl)piperazin‐1‐yl]ethyl}‐3‐[11C]methoxybenzamide ([11C] 2 ) in rat. The results provide new insights on the in vitro properties that a brain PET dopamine D4 radioligand should possess in order to have improved in vivo utility in rodents.  相似文献   

10.
2‐Choloroethyl Ethyl Sulfide (CEES) exposure causes inflammatory lung diseases, including acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. This may be associated with oxidative stress, which has been implicated in the desensitization of beta‐adrenergic receptors (β‐ARs). The objective of this study was to investigate whether lung injury induced by intratracheal CEES exposure (2 mg/kg body weight) causes desensitization of β‐ARs. The animals were sacrificed after 7 days and lungs were removed. Lung injury was established by measuring the leakage of iodinated‐bovine serum albumin ([125I]‐BSA) into lung tissue. Receptor‐binding characteristics were determined by measuring the binding of [3H] dihydroalprenolol ([3H] DHA) (0.5–24 nM) to membrane fraction in the presence and absence of DLDL ‐propranolol (10 μ M). Both high‐ and low‐affinity β‐ARs were identified in the lung. Binding capacity was significantly higher in low‐affinity site in both control and experimental groups. Although CEES exposure did not change KD and Bmax at the high‐affinity site, it significantly decreased both KD and Bmax at low affinity sites. A 20% decrease in β2‐AR mRNA level and a 60% decrease in membrane protein levels were observed in the experimental group. Furthermore, there was significantly less stimulation of adenylate cyclase activity by both cholera toxin and isoproterenol in the experimental group in comparison to the control group. Treatment of lungs with 3‐isobutyl‐1‐methylxanthine (IBMX), an inhibitor of phosphodiesterase (PDE) could not abolish the difference between the control group and the experimental group on the stimulation of the adenylate cyclase activity. Thus, our study indicates that CEES‐induced lung injury is associated with desensitization of β2‐AR. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:59–70, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20265  相似文献   

11.
In this study, proteinogenic amino acids residues of dimeric dermorphin pentapeptides were replaced by the corresponding β3homo‐amino acids. The potency and selectivity of hybrid α/β dimeric dermorphin pentapeptides were evaluated by competetive receptor binding assay in the rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). Tha analog containing β3homo‐Tyr in place of Tyr (Tyr‐d ‐Ala‐Phe‐Gly‐β3homo‐Tyr‐NH‐)2 showed good μ receptor affinity and selectivity (IC50 = 0.302, IC50 ratio μ/δ = 68) and enzymatic stability in human plasma. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
For the first time, we have demonstrated in AR4-2J cells, an experimental model of azaserine-induced carcinoma in the rat exocrine pancreas, the co-expression of α1 subunit of dihydropyridine-sensitive Ca2+ channel and the α1 sub-unit of ω-conotoxin-sensitive Ca2+ channel RNA messengers which share homologous sequences with, respectively, rbC II and rbB I sub-types described in the rat brain. These two types of voltage-dependent Ca2+ channels which are functionally expressed, emphasize the acquisition during carcinogenesis of neuroendocrine features of AR4-2J cells. Additionally, using antisense phosphorothioate oligodeoxynucleotide, we demonstrated clearly the involvement of dihydropyridine-sensitive Ca2+ channels in the control of AR4-2J cell proliferation.  相似文献   

13.
While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all‐polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all‐polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4‐c ]pyrrole‐4,6‐dione (TPD) and 3,4‐difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low‐bandgap polymer donor commonly used with fullerenes (PBDT‐TS1; taken as a model system). In this material set, the introduction of a third electron‐deficient motif, namely 2,1,3‐benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (E opt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow‐gap P2TPDBT[2F]T analog (E opt = 1.7 eV) used as fullerene alternative yields high open‐circuit voltages (V OC) of ≈1.0 V, notable short‐circuit current values (J SC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all‐polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates.  相似文献   

14.
The 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were synthesized from the reactions of 7‐benzylidenebicyclo[3.2.0]hept‐2‐en‐6‐ones with 2‐aminobenzenethiol. The antiproliferative activities of 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were determined against C6 (rat brain tumor) and HeLa (human cervical carcinoma cells) cell lines using BrdU cell proliferation ELISA assay. Cisplatin and 5‐fluorouracil (5‐FU) were used as standards. The most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 cell lines with IC50=5.89 μm value (cisplatin, IC50=14.46 μm and 5‐FU, IC50=76.74 μm ). Furthermore, the most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa cell lines with IC50=3.98 μm (cisplatin, IC50=37.95 μm and 5‐FU, IC50=46.32 μm ). Additionally, computational studies of related molecules were performed by using B3LYP/6‐31G+(d,p) level in the gas phase. Experimental IR and NMR data were compared with the calculated results and were found to be compatible with each other. Molecular electrostatic potential (MEP) maps of the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa and the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 were investigated, aiming to determine the region that the molecule is biologically active. Biological activities of mentioned molecules were investigated with molecular docking analyses. The appropriate target protein (PDB codes: 1 M17 for the HeLa cells and 1JQH for the C6 cells) was used for 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole and 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole molecules exhibiting the highest biological activity against HeLa and C6 cells in the docking studies. As a result, it was determined that these molecules are the best candidates for the anticancer drug.  相似文献   

15.
The synthesis of new dermorphin analogues is described. The (R)‐alanine or phenylalanine residues of natural dermorphin were substituted by the corresponding α‐methyl‐β‐azidoalanine or α‐benzyl‐β‐azido(1‐piperidinyl)alanine residues. The potency and selectivity of the new analogues were evaluated by a competitive receptor binding assay in rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). The most active analogue in this series, Tyr‐(R)‐Ala‐(R)‐α‐benzyl‐β‐azidoAla‐Gly‐Tyr‐Pro‐Ser‐NH2 and its epimer were analysed by 1H and 13C NMR spectroscopy and restrained molecular dynamics simulations. The dominant conformation of the investigated peptides depended on the absolute configuration around Cα in the α‐benzyl‐β‐azidoAla residue in position 3. The (R) configuration led to the formation of a type I β‐turn, whilst switching to the (S) configuration gave rise to an inverse β‐turn of type I′, followed by the formation of a very short β‐sheet. The selectivity of Tyr‐(R)‐Ala‐(R) and (S)‐α‐benzyl‐β‐azidoAla‐Gly‐Tyr‐Pro‐Ser‐NH2 was shown to be very similar; nevertheless, the two analogues exhibited different conformational preferences. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
The cannabinoid type 2 (CB2) receptor plays an important role in neuroinflammatory and neurodegenerative diseases such as multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease and is therefore a very promising target for therapeutic approaches as well as for imaging. Based on the literature, we identified one 4‐oxoquinoline derivative (designated KD2) as the lead structure. It was synthesized, radiolabeled and evaluated as a potential imaging tracer for CB2. [11C]KD2 was obtained in 99% radiochemical purity. Moderate blood–brain barrier (BBB) passage was predicted for KD2 from an in vitro transport assay with P‐glycoprotein‐transfected Madin Darby canine kidney cells. No efflux of KD2 by P‐glycoprotein was detected. In vitro autoradiography of rat and mouse spleen slices demonstrated that [11C]KD2 exhibits high specific binding towards CB2. High spleen uptake of [11C]KD2 was observed in dynamic positron emission tomography (PET) studies with Wistar rats and its specificity was confirmed by displacement study with a selective CB2 agonist, GW405833. A pilot autoradiography study with post‐mortem spinal cord slices from amyotrophic lateral sclerosis (ALS) patients with [11C]KD2 suggested the presence of CB2 receptors under disease conditions. Specificity of [11C]KD2 binding could also be demonstrated on these human tissues. In conclusion, [11C]KD2 shows good in vitro and in vivo properties as a potential PET tracer for CB2.

  相似文献   


17.
A series of new acetohydrazone‐containing 1,2,4‐triazolo[1,5‐a]pyrimidine derivatives were designed and synthesized for the purpose of searching for novel agrochemicals with higher fungicidal activity. Their in vitro fungicidal activities against Rhizoctonia solani were evaluated, and the most promising compound, 2‐[(5,7‐dimethyl[1,2,4]triazolo[1,5‐a]pyrimidin‐2‐yl)sulfanyl]‐2′‐[(2‐hydroxyphenyl)methylidene]acetohydrazide ( 2‐17 ), showed a lower EC50 value (5.34 μg ml?1) than that of commercial carbendazim (EC50=7.62 μg ml?1). Additionally, compound 2‐17 was also found to display broad‐spectrum fungicidal activities, and its EC50 value (4.56 μg ml?1) against Botrytis cinereapers was very similar to that of carbendazim. Qualitative structure–activity relationships (QSARs) of the synthesized compounds were also discussed.  相似文献   

18.
Interleukin (IL)–15 is an inflammatory cytokine that constitutes a validated therapeutic target in some immunopathologies, including rheumatoid arthritis (RA). Previously, we identified an IL‐15 antagonist peptide named [K6T]P8, with potential therapeutic application in RA. In the current work, the metabolic stability of this peptide in synovial fluids from RA patients was studied. Moreover, [K6T]P8 peptide was labeled with 99mTc to investigate its stability in human plasma and its biodistribution pattern in healthy rats. The biological activity of [K6T]P8 peptide and its dimer was evaluated in CTLL‐2 cells, using 3 different additives to improve the solubility of these peptides. The half‐life of [K6T]P8 in human synovial fluid was 5.88 ± 1.73 minutes, and the major chemical modifications included peptide dimerization, cysteinylation, and methionine oxidation. Radiolabeling of [K6T]P8 with 99mTc showed a yield of approximately 99.8%. The 99mTc‐labeled peptide was stable in a 30‐fold molar excess of cysteine and in human plasma, displaying a low affinity to plasma proteins. Preliminary biodistribution studies in healthy Wistar rats suggested a slow elimination of the peptide through the renal and hepatic pathways. Although citric acid, sucrose, and Tween 80 enhanced the solubility of [K6T]P8 peptide and its dimer, only the sucrose did not interfere with the in vitro proliferation assay used to assess their biological activity. The results here presented, reinforce nonclinical characterization of the [K6T]P8 peptide, a potential agent for the treatment of RA and other diseases associated with IL‐15 overexpression.  相似文献   

19.
Photodynamic therapy (PDT) is an established treatment modality, used mainly for anticancer therapy that relies on the interaction of photosensitizer, light and oxygen. For the treatment of pathologies in certain anatomical sites, improved targeting of the photosensitizer is necessary to prevent damage to healthy tissue. We report on a novel dual approach of targeted PDT (vascular and cellular targeting) utilizing the expression of neuropeptide somatostatin receptor (sst2) on tumor and neovascular-endothelial cells. We synthesized two conjugates containing the somatostatin analogue [Tyr3]-octreotate and Chlorin e6 (Ce6): Ce6-K3-[Tyr3]-octreotate (1) and Ce6-[Tyr3]-octreotate-K3-[Tyr3]-octreotate (2). Investigation of the uptake and photodynamic activity of conjugates in-vitro in human erythroleukemic K562 cells showed that conjugation of [Tyr3]-octreotate with Ce6 in conjugate 1 enhances uptake (by a factor 2) in cells over-expressing sst2 compared to wild-type cells. Co-treatment with excess free Octreotide abrogated the phototoxicity of conjugate 1 indicative of a specific sst2-mediated effect. In contrast conjugate 2 showed no receptor-mediated effect due to its high hydrophobicity. When compared with un-conjugated Ce6, the PDT activity of conjugate 1 was lower. However, it showed higher photostability which may compensate for its lower phototoxicity. Intra-vital fluorescence pharmacokinetic studies of conjugate 1 in rat skin-fold observation chambers transplanted with sst2 + AR42J acinar pancreas tumors showed significantly different uptake profiles compared to free Ce6. Co-treatment with free Octreotide significantly reduced conjugate uptake in tumor tissue (by a factor 4) as well as in the chamber neo-vasculature. These results show that conjugate 1 might have potential as an in-vivo sst2 targeting photosensitizer conjugate.  相似文献   

20.
A single chiral cyclic α,α‐disubstituted amino acid, (3S,4S)‐1‐amino‐(3,4‐dimethoxy)cyclopentanecarboxylic acid [(S,S)‐Ac5cdOM], was placed at the N‐terminal or C‐terminal positions of achiral α‐aminoisobutyric acid (Aib) peptide segments. The IR and 1H NMR spectra indicated that the dominant conformations of two peptides Cbz‐[(S,S)‐Ac5cdOM]‐(Aib)4‐OEt ( 1) and Cbz‐(Aib)4‐[(S,S)‐Ac5cdOM]‐OMe (2) in solution were helical structures. X‐ray crystallographic analysis of 1 and 2 revealed that a left‐handed (M) 310‐helical structure was present in 1 and that a right‐handed (P) 310‐helical structure was present in 2 in their crystalline states. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号