首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
测定和分析2个品种甘蔗节间蔗糖含量与和蔗糖代谢相关的4种酶活性之间关系的结果表明:节间蔗糖含量与酸性转化酶活性成极显著负相关,与蔗糖磷酸合成酶活性呈显著正相关。从通径分析结果可知,4种关键酶中可溶性酸性转化酶和蔗糖磷酸合成酶是对蔗糖含量贡献程度最大的2个酶.  相似文献   

3.
4.
The activities of sucrose-phosphate synthase (SPS), sucrose synthase (SUSY), neutral invertase (NI) and soluble acid invertase (SAI) regulates sucrose activity in sugarcane were studied. Micropropagated sugarcane plants were obtained from callus cultures of four Mexican commercially available sugarcane varieties characterized by differences in sugar production, and activities of SPS, SUSY, NI, SAI and concentrations of sucrose were monitored in the sugarcane stem. The results indicated that sucrose accumulation was positively and significantly related to an increase in activity of SPS and SUSY and negatively to a reduction in activity of SAI and NI (P<0.05). SPS explained most of the variations found for sucrose accumulation and least for NI. The relationship between activity of SPS, SUSY, NI and SAI in sugarcane stem was similar in each variety.  相似文献   

5.
Sucrose accumulation in sweet sorghum stem internodes in relation to growth   总被引:3,自引:0,他引:3  
Sweet sorghum (Sorghum bicolor L. Moench) stems of different cultivars (NK 405. Keller and Tracy) reveal a different pattern of sucrose accumulation with respect to in-ternodal sugar content and distribution. The onset of sucrose storage is not necessarily associated with the reproductive stage of the plant, as was hitherto assumed, but obviously occurs after cessation of internodai elongation as was postulated for the sugarcane stem. For at least two of the three cultivars, ripening is an internode to internode process beginning at the lowermost culm parts. Intensive growth of the internodes, combined with a high hexose content in stern parenchyma, shows a strong positive correlation (r |Mg 0.94) to the activity of sucrose synthase (SuSy; EC 2.4.13), but not to invertase (EC 3.2.1.26) which is not present as soluble (neutral and acid) or cell wall-bound, salt-extractable enzyme in the three culsivars investigated. Sucrose synthase measured in sucrose cleavage and synthesis direction reveals divergent activity rates and sensitivity towards exogenously applied Mg2+ ions and pH. SuSy activity is connected to the increase of internodai sucrose content in so far as (1) its decline is a prerequisite for the onset of sucrose accumulation and (2) it remains at a constant low level during sucrose storage. Sucrose phosphate synthase (SPS; EC 2.4.1.14) activity in the sorghum stem is low compared to SuSy and uniformly distributed over all inter-nodes. Only source leaves of sorghum show a considerable SPS activity, but neither stem nor leaf SPS reveal a positive correlation to the increase of internodai sucrose content. Sucrose phosphate phosphatase (SPP; EC 3.1.3.24) amounts lo only 24–30% of the respective SPS activity but follows the same distribution pattern. None of the enzymes under study proves to be responsible for the extent of sucrose storage in the stem, so other phenomena such as transport processes within the stern tissue require further investigation.  相似文献   

6.
Sucrose synthesis/accumulation in sugarcane is a complex process involving many genes and regulatory sequences that control biochemical events in source–sink tissues. Among these, sucrose synthase (SuSy), sucrose phosphate synthase (SPS), soluble acid (SAI) and cell wall (CWI) invertases are important. Expression of these enzymes was compared in an early (CoJ64) and late (BO91) maturing sugarcane variety using end‐point and qRT‐PCR. Quantitative RT‐PCR at four crop stages revealed high CWI expression in upper internodes of CoJ64, which declined significantly in both top and bottom internodes with maturity. In BO91, CWI expression was high in top and bottom internodes and declined significantly only in top internodes as the crop matured. Overall, CWI expression was higher in CoJ64 than in BO91. During crop growth, there was no significant change in SPS expression in bottom internodes in CoJ64, whereas in BO91 it decreased significantly. Apart from a significant decrease in expression of SuSy in mature bottom internodes of BO91, there was no significant change. Similar SAI expression was observed with both end‐point and RT‐PCR, except for significantly increased expression in top internodes of CoJ64 with maturity. SAI, being a major sucrose hydrolysing enzyme, was also monitored with end‐point PCR expression in internode tissues of CoJ64 and BO91, with higher expression of SAI in BO91 at early crop stages. Enzyme inhibitors, e.g. manganese chloride (Mn++), significantly suppressed expression of SAI in both early‐ and late‐maturing varieties. Present findings enhance understanding of critical sucrose metabolic gene expression in sugarcane varieties differing in content and time of peak sucrose storage. Thus, through employing these genes, improvement of sugarcane sucrose content is possible.  相似文献   

7.
Summary Data on changes of apparent activities of enzymes involved in sucrose metabolism of developing spruce needles are presented. Extractable activities of sucrose phosphate synthase (SPS, sucrose synthesis), and sucrose synthase (SS) and acid invertase (both sucrolysis) were determined in small volumes using a novel microplate reader system which combined high rates of activity with good reproducibility and high sample throughput. During a developmental period of up to 18 months after bud break characteristic changes in SPS and SS occurred. During the first 4 months of needle development SS declined while SPS increased which is indicative of a transition from net import to net export of photoassimilates (sink/source transition). After needle maturation both enzymes exhibited parallel annual changes with increasing rates towards autumn, which was mirrored by the pool sizes of sucrose (possibly due to the acquisition of frost hardiness). Acid invertase activity was comparable to that of SS but showed only marginal seasonal changes. Approximately 70% of its total activity was found to be soluble.  相似文献   

8.
Sugar metabolism is one of the important factors involved in winter hardiness and since the discovery of sucrose biosynthesis, considerable advances have been made in understanding its regulation and crucial role. This investigation examined the changes in activities of sucrose metabolizing enzymes and sugar content during cold hardening of perennial ryegrass (Lolium perenne L.). Changes in acid invertase (AI), sucrose synthase (SS) and sucrose phosphate synthase (SPS) along with all the three soluble sugars glucose, fructose and sucrose were measured in leaves and stem base tissue during cold acclimation. Although fructans were the predominant carbohydrate the changes in glucose, fructose and sucrose were significant. All the three soluble sugars in both leaf and stem tissues started to decrease from the first day and continued up to day 7 and thereafter started to increase until day 28. AI in the soluble fraction showed a higher activity than that in the cell wall bound fraction. In both the leaf and stem bases soluble AI activity increased during the first week and after that it started to decrease gradually. On the other hand both the SS and SPS increased gradually throughout the acclimation period. Sucrose content was negatively correlated with AI and positively correlated with SS and SPS accounting well for the relation between the substrate and enzyme activity. These results suggest that AI, SS and SPS in ryegrass are regulated by cold acclimation and play an important role in sugar accumulation and acquisition of freezing tolerance.  相似文献   

9.
Analyses of transgenic sugarcane clones with 45–95% reduced cytosolic pyrophosphate: d-fructose-6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) activity displayed no visual phenotypical change, but significant changes were evident in in vivo metabolite levels and fluxes during internode development. In three independent transgenic lines, sucrose concentrations increased between three- and sixfold in immature internodes, compared to the levels in the wildtype control. There was an eightfold increase in the hexose-phosphate:triose-phosphate ratio in immature internodes, a significant restriction in the triose phosphate to hexose phosphate cycle and significant increase in sucrose cycling as monitored by 13C nuclear magnetic resonance. This suggests that an increase in the hexose-phosphate concentrations resulting from a restriction in the conversion of hexose phosphates to triose phosphates drive sucrose synthesis in the young internodes. These effects became less pronounced as the tissue matured. Decreased expression of PFP also resulted in an increase of the ATP/ADP and UTP/UDP ratios, and an increase of the total uridine nucleotide and, at a later stage, the total adenine nucleotide pool, revealing strong interactions between PPi metabolism and general energy metabolism. Finally, decreased PFP leads to a reduction of PPi levels in older internodes indicating that in these developmental stages PFP acts in the gluconeogenic direction. The lowered PPi levels might also contribute to the absence of increases in sucrose contents in the more mature tissues of transgenic sugarcane with reduced PFP activity.  相似文献   

10.
套作大豆苗期茎秆纤维素合成代谢与抗倒性的关系   总被引:1,自引:1,他引:0  
为从茎秆强度的角度研究套作大豆苗期对荫蔽胁迫的响应及耐荫抗倒机制,采用耐荫性不同的3个大豆材料,在玉米大豆套作和单作两种种植模式下,对茎秆的纤维素、可溶性糖、蔗糖、淀粉含量及蔗糖代谢中关键酶活性以及茎秆抗折力、抗倒伏指数等进行测定,研究它们与套作大豆苗期倒伏的关系.套作大豆苗期倒伏严重,茎秆抗折力、抗倒伏指数、纤维素、可溶性糖、蔗糖、淀粉含量和相关酶活性均显著低于单作.不同大豆材料受套作荫蔽影响程度不同,强耐荫性大豆南豆12茎秆抗折力降低幅度最小,在套作环境下其茎秆抗折力、抗倒伏指数大,纤维素、可溶性糖、蔗糖、淀粉含量高,酶活性强.相关分析表明: 套作大豆苗期茎秆糖含量均与抗折力呈极显著正相关,与倒伏率呈极显著负相关;蔗糖含量与蔗糖磷酸合酶(SPS)、蔗糖合酶(SS)、中性转化酶(NI)活性呈极显著正相关,与酸性转化酶(AI)活性相关性不显著;纤维素含量与SPS、SS呈极显著正相关,与NI呈显著正相关,与AI相关性不显著.套作环境下,强耐荫性大豆苗期茎秆中较高的SPS、SS活性是其维持高蔗糖和纤维素含量的酶学基础,而高纤维素含量有利于提高茎秆强度,进而增强其抗倒伏能力.本研究应用玉米大豆套作种植系统,从苗期抗倒角度,探明了光环境对不同基因型大豆茎秆纤维素代谢的影响机制,为下一步筛选耐荫抗倒大豆品种提供了理论依据.  相似文献   

11.
12.
Current concepts of the factors determining sink strength and the subsequent regulation of carbohydrate metabolism in tomato fruit are based upon an understanding of the relative roles of sucrose synthase, sucrose phosphate synthase and invertase, derived from studies in mutants and transformed plants. These enzymes participate in at least four futile cycles that involve sugar transport between the cytosol, vacuole and apoplast. Key reactions are (1) the continuous rapid degradation of sucrose in the cytosol by sucrose synthase (SuSy), (2) sucrose re-synthesis via either SuSy or sucrose phosphate synthase (SPS), (3) sucrose hydrolysis in the vacuole or apoplast by acid invertase, (4) subsequent transport of hexoses to the cytosol where they are once more converted into sucrose, and (5) rapid synthesis and breakdown of starch in the amyloplast. In this way futile cycles of sucrose/hexose interchange govern fruit sugar content and composition. The major function of the high and constant invertase activity in red tomato fruit is, therefore, to maintain high cellular hexose concentrations, the hydrolysis of sucrose in the vacuole and in the intercellular space allowing more efficient storage of sugar in these compartments. Vacuolar sugar storage may be important in sustaining fruit cell growth at times when less sucrose is available for the sink organs because of exhaustion of the carbohydrate pools in source leaves.  相似文献   

13.
In the paper, the soluble sugar composition and activities of enzymes metabolizing sucrose: invertase (β-fructosidase, EC 3.2.1.26), sucrose synthase (SS; EC 2.4.1.13) and sucrose-phosphate synthase (SPS; EC 2.4.1.14) were investigated during fruit development of two pear species: Pyrus bretschneideri Rehd. cv. ‘Yali’ and P. pyrifolia Nakai cv. ‘Aikansui’, characterized as low and high sucrose types, respectively. It was found that, at the end of fruit development of ‘Aikansui’, the level of sucrose was five times higher than in ‘Yali’ in the same period. It was coincident with the significantly higher activities of SS (synthesis) and SPS and lower activities of invertase (vacuolar and cell wall-bound acid invertase and neutral invertase). The high correlation was found between sucrose level and SS (synthesis) and SPS activities in ‘Aikansui’ pears.  相似文献   

14.
15.
套袋对梨果实发育过程中糖组分及其相关酶活性的影响   总被引:3,自引:0,他引:3  
以翠冠和黄金梨为试材,测定套袋和未套袋(对照)梨果实发育时期果实中蔗糖、葡萄糖、果糖和山梨醇含量以及蔗糖代谢相关酶酸性转化酶(AI)、中性转化酶(NI)、蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)的活性,并对果实中糖组分积累与酶活性的关系进行了分析.结果表明:(1)两梨品种套袋果实在发育过程中蔗糖、葡萄糖、果糖、山梨醇和糖代谢相关酶活性变化趋势与对照基本一致,套袋果实糖含量均低于对照但差异不显著,而各相关酶活性在两类果实间差异表现各异.(2)在梨果实发育早期,果实中以分解酶类为主,糖分积累低;发育后期以合成酶类为主,糖分积累多.(3)两品种套袋和对照果实AI活性与葡萄糖含量均呈显著或极显著正相关,SS合成方向活性与蔗糖含量均为极显著正相关,且翠冠对照果SPS活性与蔗糖含量呈极显著正相关.可见,套袋通过提高果实发育早期转化酶(Inv)活性,降低果实后期蔗糖磷酸合成酶(SPS)、蔗糖合成酶(SS)的活性来影响糖分积累,从而影响梨果品质.  相似文献   

16.
Wheat leaf non-sequential senescence at the late grain-filling stage involves the early senescence of younger flag leaves compared to that observed in older second leaves. On the other hand, sequential senescence involves leaf senescence that follows an age-related pattern, in which flag leaves are the latest to undergo senescence. The characteristics of sugar metabolism in two sequential senescence cultivars and two non-sequential senescence cultivars under both natural and drought conditions were studied to elucidate the underlying mechanism of drought tolerance in two different senescence modes. The results showed that compared to sequential senescence wheat cultivars, under natural and drought conditions, non-sequential senescence wheat cultivars showed a higher leaf net photosynthetic rate, higher soluble sugar levels in leaves, leaf sheaths, and internodes, higher leaf sucrose synthase (SS) and sucrose phosphate synthase (SPS) activity, and higher grain SS activity, thereby suggesting that non-sequential senescence wheat cultivars had stronger source activity. Spike weight, grain weight per spike, and 100-grain weight of non-sequential senescence cultivars at maturity were significantly higher than those of sequential senescence cultivars under both natural and drought conditions. These findings indicate that the higher rate of accumulation and the higher mobilization of soluble sugar in the leaves, leaf sheaths and internodes of non-sequential senescence cultivars improve grain weight and drought tolerance. At the late grain-filling stage, drought conditions adversely affected leaf chlorophyll content, net photosynthetic rate, soluble sugar and sucrose content, SS and SPS activity, gain SS activity, and weight. This study showed that higher rates of soluble sugar accumulation in the source was one of the reasons of triggering leaf non-sequential senescence, and higher rates of soluble sugar mobilization during leaf non-sequential senescence promoted high and stable wheat yield and drought tolerance.  相似文献   

17.
The effect of low temperature on sugar content and activities of key enzymes related to sucrose metabolism in grape (Vitis vinifera L.) branches during overwintering covered with soil was investigated. We measured the contents of soluble sugar and the activities of sucrose-phosphate synthase (SPS), sucrose synthase (SS), acid invertase (AI) and neutral invertase (NI) of three grape varieties with different freezing tolerance, Beta, Vidal and Merlot, in October, 2011, January, 2012 and March, 2012. The result showed that: total soluble sugar had the significant negative correlation, ?0.988, with temperature during overwintering covered with soil. The content of hexose was about twofold content of sucrose in January, while sucrose increased and the hexose decreased to a very low level in March, the ratios between hexose and sucrose declined to 0.26, 0.15 and 0.18. Sucrose was more important than hexose in protecting grape branches from cold injury under low temperature, but non-freezing. The accumulation of sucrose was mostly due to the elevation of the SPS activity, whereas the increase of hexose was due to the enhanced AI activity. Three grape varieties responded to low temperature positively as reflected by the variations of physiological and biochemical characteristics, such as superoxide dismutase, catalase and proline. Besides, by the principal components analysis and combined with cultivation practices, among twelve characteristics, the sugar metabolism mainly contributed to the difference of the cold resistance. The results indicated that sucrose metabolism regulation played an important role during overwintering covered with soil, and it was the key factor to explain the difference of cold resistance.  相似文献   

18.
19.
In peach (Prunus persica [L.] Batsch.), sorbitol and sucrose are the two main forms of photosynthetic and translocated carbon and may have different functions depending on the organ of utilization and its developmental stage. The role and interaction of sorbitol and sucrose metabolism was studied in mature leaves (source) and shoot tips (sinks) of ‘Nemaguard’ peach under drought stress. Plants were irrigated daily at rates of 100, 67, and 33% of evapotranspiration (ET). The relative elongation rate (RER) of growing shoots was measured daily. In mature leaves, water potential (Ψw), osmotic potential (Ψs), sorbitol‐6‐phosphate dehydrogenase (S6PDH, EC 1.1.1.200), and sucrose‐phosphate synthase (SPS, EC 2.4.1.14) activities were measured weekly. Measurements of Ψs, sorbitol dehydrogenase (SDH, 1.1.1.14), sucrose synthase (SS, EC 2.4.1.13), acid invertase (AI, EC 3.2.1.26), and neutral invertase (NI, EC 3.2.1.27) activities were taken weekly in shoot tips. Drought stress reduced RER and Ψw of plants in proportion to water supply. Osmotic adjustment was detected by the second week of treatment in mature leaves and by the third week in shoot tips. Both SDH and S6PDH activities were reduced by drought stress within 4 days of treatment and positively correlated with overall Ψw levels. However, only SDH activity was correlated with Ψs. Among the sucrose enzymes, only SS was affected by drought, being reduced after 3 weeks. Sorbitol accumulation in both mature leaves and shoot tips of stressed plants was observed starting from the second week of treatment and reached up to 80% of total solutes involved in osmotic adjustment. Sucrose content was up to 8‐fold lower than sorbitol content and accumulated only occasionally. We conclude that a loss of SDH activity in sinks leads to osmotic adjustment via sorbitol accumulation in peach. We propose an adaptive role of sorbitol metabolism versus a maintenance role of sucrose metabolism in peach under drought stress.  相似文献   

20.
Transfer of potato tubers to low temperature leads after 2–4 d to a stimulation of sucrose synthesis, a decline of hexose-phosphates and a change in the kinetic properties, and the appearance of a new form of sucrose phosphate synthase (SPS). Antisense and co-suppression transformants with a 70–80% reduction in SPS expression have been used to analyse the contribution of SPS to the control of cold sweetening. The rate of sucrose synthesis in cold-stored tubers was investigated by measuring the accumulation of sugars, by injecting labelled glucose of high specific activity into intact tubers, and by providing 50 mol m–3 labelled glucose to fresh tuber slices from cold-stored tubers. A 70–80% decrease of SPS expression resulted in a reproducible but non-proportional (10–40%) decrease of soluble sugars in cold-stored tubers, and a non-proportional (about 25%) inhibition of label incorporation into sucrose, increased labelling of respiratory intermediates and carbon dioxide, and increased labelling of glucans. The maximum activity of SPS is 50-fold higher than the net rate of sugar accumulation in wild-type tubers, and decreased expression of SPS in the transformants was partly compensated for increased levels of hexose-phosphates. It is concluded that SPS expression per se does not control sugar synthesis. Rather, a comparison of the in vitro properties of SPS with the estimated in vivo concentrations of effectors shows that SPS is strongly substrate limited in vivo . Alterations in the kinetic properties of SPS, such as occur in response to low temperature, will provide a more effective way to stimulate sucrose synthesis than changes of SPS expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号