首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Prostate cancer (PCa) is characterized by deregulated expression of several tumor suppressor or oncogenic miRNAs. The objective of this study was the identification and characterization of miR-let-7c as a potential tumor suppressor in PCa.

Experimental Design

Levels of expression of miR-let-7c were examined in human PCa cell lines and tissues using qRT-PCR and in situ hybridization. Let-7c was overexpressed or suppressed to assess the effects on the growth of human PCa cell lines. Lentiviral-mediated re-expression of let-7c was utilized to assess the effects on human PCa xenografts.

Results

We identified miR-let-7c as a potential tumor suppressor in PCa. Expression of let-7c is downregulated in castration-resistant prostate cancer (CRPC) cells. Overexpression of let-7c decreased while downregulation of let-7c increased cell proliferation, clonogenicity and anchorage-independent growth of PCa cells in vitro. Suppression of let-7c expression enhanced the ability of androgen-sensitive PCa cells to grow in androgen-deprived conditions in vitro. Reconstitution of Let-7c by lentiviral-mediated intratumoral delivery significantly reduced tumor burden in xenografts of human PCa cells. Furthermore, let-7c expression is downregulated in clinical PCa specimens compared to their matched benign tissues, while the expression of Lin28, a master regulator of let-7 miRNA processing, is upregulated in clinical PCa specimens.

Conclusions

These results demonstrate that microRNA let-7c is downregulated in PCa and functions as a tumor suppressor, and is a potential therapeutic target for PCa.  相似文献   

2.
The influenza virus (IV) triggers a series of signalling events inside host cells and induces complex cellular responses. Studies have suggested that host factors play an essential role in IV replication. MicroRNAs (miRNAs) represent a class of small non-coding RNAs that target mRNAs, triggering either translation repression or RNA degradation. Emerging research suggests that host-derived cellular miRNAs are involved in mediating the host-IV interaction. Using miRNA microarrays, we identified several miRNAs aberrantly expressed in IV-infected human lung epithelial cells (A549). Specifically, miR-let-7c was highly up-regulated in IV-infected A549 cells. PITA and miRanda database screening indicated that the let-7c seed sequence is a perfect complementary sequence match to the 3' untranslated region (UTR) of viral gene M1 (+) cRNA, but not to PB2 and PA. As detected by a luciferase reporter system, let-7c directly targeted the 3'-UTR of M1 (+) cRNA, but not PB2 and PA. To experimentally identify the function of cellular let-7c, precursor let-7c was transfected into A549 cells. Let-7c down-regulated IV M1 expression at both the (+) cRNA and protein levels. Furthermore, transfection with a let-7c inhibitor enhanced the expression of M1. Therefore, let-7c may reduce IV replication by degrading M1 (+) cRNA. This is the first report indicating that cellular miRNA regulates IV replication through the degradation of viral gene (+) cRNA by matching the 3'-UTR of the viral cRNA. These findings suggest that let-7c plays a role in protecting host cells from the virus in addition to its known cellular functions.  相似文献   

3.
Recent reports have shown that the AR is the key determinant of the molecular changes required for driving prostate cancer cells from an androgen‐dependent to an androgen‐independent or androgen depletion‐independent (ADI) state. Several recent publications suggest that down‐regulation of AR expression should therefore be considered the principal strategy for the treatment of ADI prostate cancer. However, no valid data is available about how androgen‐dependent prostate cancer cells respond to apoptosis‐inducing drugs after knocking down AR expression and whether prostate cancer cells escape apoptosis after inhibition of AR expression. This review will focus on mechanisms of prostate cancer cell survival after inhibition of AR activity mediated either by androgen depletion or by targeting the expression of AR by siRNA. We have shown that knocking down AR expression by siRNA induced PI3K‐independent activation of Akt, which was mediated by calcium/calmodulin‐dependent kinase II (CaMKII). We also showed that the expression of CaMKII genes is under AR control: active AR in the presence of androgens inhibits CaMKII gene expression whereas inhibition of AR activity results in an elevated level of kinase activity and in enhanced expression of CaMKII genes. This in turn activates the anti‐apoptotic PI3K/Akt pathways. CaMKII also express anti‐apoptotic activity that is independent from the Akt pathway. This may therefore be an important mechanism by which prostate cancer cells escape apoptosis after androgen depletion or knocking down AR expression. In addition, we have found that there is another way to escape cell death after AR inhibition: DNA damaging agents cannot fully activate p53 in the absence of AR and as a result p53 down stream targets, for example, microRNA‐34, cannot be activated and induce apoptosis. This implies that there may be a need for re‐evaluation of the therapeutic approaches to human prostate cancer. J. Cell. Biochem. 106: 363–371, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
《Translational oncology》2021,14(11):101213
Clinical management of castration-resistant prostate cancer (CRPC) resulting from androgen deprivation therapy (ADT) remains challenging. Many studies indicate that androgen receptor splice variants (ARVs) play a critical role in the development of CRPC, including resistance to the new generation of inhibitors of androgen receptor (AR) action. ARVs are constitutively active and lack the ligand-binding domain (LBD), thereby allowing prostate cancer (PC) to maintain AR activity despite therapies that target the AR (full-length AR; AR-FL). Previously, we have reported that long-term ADT increases the neuroendocrine (NE) hormone – Gastrin Releasing Peptide (GRP) and its receptor (GRP-R) expression in PC cells. Further, we demonstrated that activation of GRP/GRP-R signaling increases ARVs expression by activating NF-κB signaling, thereby promoting cancer progression to CRPC. Most importantly, as a cell surface protein, GRP-R is easily targeted by drugs to block GRP/GRP-R signaling. In this study, we tested if blocking GRP/GRP-R signaling by targeting GRP-R using GRP-R antagonist is sufficient to control CRPC progression. Our studies show that blocking GRP/GRP-R signaling by targeting GRP-R using RC-3095, a selective GRP-R antagonist, efficiently inhibits NF-κB activity and ARVs (AR-V7) expression in CRPC and therapy-induced NEPC (tNEPC) cells. In addition, blocking of GRP/GRP-R signaling by targeting GRP-R can sensitize CRPC cells to anti-androgen treatment (such as MDV3100). Further, preclinical animal studies indicate combination of GRP-R antagonist (targeting ARVs) with anti-androgen (targeting AR-FL) is sufficient to inhibit CRPC and tNEPC tumor growth.  相似文献   

5.
6.
7.
8.
9.
Previous studies demonstrated that androgen receptor (AR) is expressed in human hepatocellular carcinoma (HCC), one of the male-dominant diseases. Glucose-regulated protein 78 kDa (GRP78/Bip), which has a role in cancer development, is one of the androgen response genes in prostate cell lines. The aim of this study was to investigate the impact of AR on endoplasmic reticulum (ER)-stress signaling in human hepatoma. AR and GRP78 expressions were examined in human liver tissue panels. Human hepatoma cells stably expressing short hairpin RNA targeting AR and cells over-expressing AR were generated. The expressions of ER-stress molecules and AR were measured by real-time RT-PCR and Western blotting. The effect of AR on ER-stress responsive gene expression was examined by reporter assay. Strong positive correlation between AR mRNA and GRP78 mRNA was observed in stage I/II-HCCs. AR enhanced ER-stress responsive element activities and GRP78 expression, and regulated ER-stress response in hepatocytes. Sorafenib strongly induced significant apoptosis in HepG2 cells by the inhibition of AR and inhibition of the downstream GRP78. AR seems a co-regulator of GRP78 especially in earlier-stage HCC. AR plays a critical role in controlling ER-stress, providing new therapeutic options against HCC.  相似文献   

10.
The androgen receptor (AR) plays a central role in the development and progression of prostate cancer. AR expression is maintained throughout the progression of prostate cancer and is also associated with an aggressive, castration-resistant (CR) phenotype. Despite the critical roles of AR expression in prostate cancer progression, the exact signaling mechanism regulating AR expression remains unclear. In this study, we demonstrated that AR expression was increased by a low-affinity leukotriene B(4) receptor (BLT2)-linked pathway. We found that BLT2 was overexpressed in AR-positive prostate cancer cells, such as LNCaP cells, and BLT2 inhibition, using an inhibitor or siRNA knockdown, clearly attenuated AR expression and triggered apoptosis in these cells. These results suggest a role for BLT2 in AR expression and the survival of AR-positive prostate cancer cells. Moreover, we found that the NADPH oxidase family protein, Nox4, lay downstream of BLT2 and mediated the production of reactive oxygen species (ROS) and subsequent NF-κB stimulation, thereby inducing AR expression. Taken together, our results demonstrate that BLT2 plays a critical role in AR expression via a Nox4-ROS-NF-κB-linked pathway, thereby mediating the survival of AR-positive prostate cancer cells. Our findings point to BLT2 as a key regulator of AR expression and will contribute to the development of novel therapies for AR-positive prostate cancers, including androgen-responsive and CR prostate cancers.  相似文献   

11.
12.
Androgen ablation therapy is the most common strategy for suppressing prostate cancer progression; however, tumor cells eventually escape androgen dependence and progress to an androgen-independent phase. The androgen receptor (AR) plays a pivotal role in this transition. To address this transition mystery in prostate cancer, we established an androgen-independent prostate cancer cell line (LNCaPdcc), by long-term screening of LNCaP cells in androgen-deprived conditions, to investigate changes of molecular mechanisms before and after androgen withdrawal. We found that LNCaPdcc cells displayed a neuroendocrine morphology, less aggressive growth, and lower expression levels of cell cycle-related factors, although the cell cycle distribution was similar to parental LNCaP cells. Notably, higher protein expression of AR, phospho-Ser(81)-AR, and PSA in LNCaPdcc cells were observed. The nuclear distribution and protein stability of AR increased in LNCaPdcc cells. In addition, cell proliferation results exhibited the biphasic nature of the androgen (R1881) effect in two cell lines. On the other hand, LNCaPdcc cells expressed higher levels of Her2, phospho-Tyr(1221/1222)-Her2, ErbB3, and ErbB4 proteins than parental LNCaP cells. These two cell lines exhibited distinct responses to Her2 activation (by heregulin treatment) on Her2 phosphorylation and Her2 inhibition (by AG825 or Herceptin treatments) on proliferation. In addition, the Her2 inhibitor more effectively caused AR degradation and diminished AR Ser(81) phosphorylation in LNCaPdcc cells. Taken together, our data demonstrate that Her2 plays an important role in the support of AR protein stability in the transition of androgen requirement in prostate cancer cells. We hope these findings will provide novel insight into the treatment of hormone-refractory prostate cancer.  相似文献   

13.
Prostate cancer is dependent on circulating testosterone in its early stages and is treatable with radiation and surgery. However, recurrent prostate tumors advance to an androgen-independent state in which they progress in the absence of circulating testosterone, leading to metastasis and death. During the development of androgen independence, prostate cancer cells are known to increase intracellular testosterone synthesis, which maintains cancer cell growth in the absence of significant amounts of circulating testosterone. Overexpression of the androgen receptor (AR) occurs in androgen-independent prostate cancer and has been proposed as another mechanism promoting the development of androgen independence. The LNCaP-AR cell line is engineered to overexpress AR but is otherwise similar to the widely studied LNCaP cell line. We have previously shown that pomegranate extracts inhibit both androgen-dependent and androgen-independent prostate cancer cell growth. In this study, we examined the effects of pomegranate polyphenols, ellagitannin-rich extract and whole juice extract on the expression of genes for key androgen-synthesizing enzymes and the AR. We measured expression of the HSD3B2 (3beta-hydroxysteroid dehydrogenase type 2), AKR1C3 (aldo-keto reductase family 1 member C3) and SRD5A1 (steroid 5alpha reductase type 1) genes for the respective androgen-synthesizing enzymes in LNCaP, LNCaP-AR and DU-145 human prostate cancer cells. A twofold suppression of gene expression was considered statistically significant. Pomegranate polyphenols inhibited gene expression and AR most consistently in the LNCaP-AR cell line (P=.05). Therefore, inhibition by pomegranate polyphenols of gene expression involved in androgen-synthesizing enzymes and the AR may be of particular importance in androgen-independent prostate cancer cells and the subset of human prostate cancers where AR is up-regulated.  相似文献   

14.
Alimirah F  Chen J  Xin H  Choubey D 《FEBS letters》2006,580(6):1659-1664
Expression of androgen receptor (AR) in prostate epithelial cells is thought to regulate cell proliferation, differentiation, and survival. However, the molecular mechanisms remain unclear. We report that re-expression of AR in PC-3 human prostate cancer cell line resulted in upregulation of IFI16 protein, a negative regulator of cell growth. We found that the IFI16 protein bound to AR in a ligand-dependent manner and the DNA-binding domain (DBD) of the AR was sufficient to bind IFI16. Furthermore, re-expression of IFI16 protein in LNCaP prostate cancer cells, which do not express IFI16 protein, resulted in downregulation of AR expression and an inhibition of the expression of AR target genes. Our observations identify a role for IFI16 protein in AR-mediated functions.  相似文献   

15.
The androgen receptor (AR) plays an essential role in the development and progression of prostate cancer. However, while it has long been the primary molecular target of metastatic prostate cancer therapies, it has not been explored as an immunotherapeutic target. In particular, the AR ligand-binding domain (LBD) is a potentially attractive target, as it has an identical sequence among humans as well as among multiple species, providing a logical candidate for preclinical evaluation. In this report, we evaluated the immune and anti-tumor efficacy of a DNA vaccine targeting the AR LBD (pTVG-AR) in relevant rodent preclinical models. We found immunization of HHDII-DR1 mice, which express human HLA-A2 and HLA-DR1, with pTVG-AR augmented AR LBD HLA-A2-restricted peptide-specific, cytotoxic immune responses in vivo that could lyse human prostate cancer cells. Using an HLA-A2-expressing autochthonous model of prostate cancer, immunization with pTVG-AR augmented HLA-A2-restricted immune responses that could lyse syngeneic prostate tumor cells and led to a decrease in tumor burden and an increase in overall survival of tumor-bearing animals. Finally, immunization decreased prostate tumor growth in Copenhagen rats that was associated with a Th1-type immune response. These data show that the AR is as a prostate cancer immunological target antigen and that a DNA vaccine targeting the AR LBD is an attractive candidate for clinical evaluation.  相似文献   

16.
Z Liu  G Ren  C Shangguan  L Guo  Z Dong  Y Li  W Zhang  L Zhao  P Hou  Y Zhang  X Wang  J Lu  B Huang 《PloS one》2012,7(7):e40943
All-trans retinoic acid (ATRA) has been widely investigated for treatments of many cancers including prostate cancer. HOXB13, silenced in androgen receptor-negative (AR(-)) prostate cancer cells, plays a role in AR(-) prostate cancer cell growth arrest. In this study we intended to elucidate the mechanisms that are involved in the proliferation inhibition of AR(-) prostate cancer cells triggered by ATRA. We discovered that ATRA was able to induce the growth arrest and to increase HOXB13 expression in AR(-) prostate cancer cells. Both EZH2 and DNMT3b participated in the repression of HOXB13 expression through an epigenetic mechanism involving DNA and histone methylation modifications. Specifically, EZH2 recruited DNMT3b to HOXB13 promoter to form a repression complex. Moreover, ATRA could upregulate HOXB13 through decreasing EZH2 and DNMT3b expressions and reducing their interactions with the HOXB13 promoter. Concurrently, the methylation level of the HOXB13 promoter was reduced upon the treatment of ATRA. Results from this study implicated a novel effect of ATRA in inhibition of the growth of AR(-) resistant human prostate cancer cells through alteration of HOXB13 expression as a result of epigenetic modifications.  相似文献   

17.
18.
The androgen receptor (AR) is expressed in a subset of prostate stromal cells and functional stromal cell AR is required for normal prostate developmental and influences the growth of prostate tumors. Although we are broadly aware of the specifics of the genomic actions of AR in prostate cancer cells, relatively little is known regarding the gene targets of functional AR in prostate stromal cells. Here, we describe a novel human prostate stromal cell model that enabled us to study the effects of AR on gene expression in these cells. The model involves a genetically manipulated variant of immortalized human WPMY-1 prostate stromal cells that overexpresses wildtype AR (WPMY-AR) at a level comparable to LNCaP cells and is responsive to dihydrotestosterone (DHT) stimulation. Use of WPMY-AR cells for gene expression profiling showed that the presence of AR, even in the absence of DHT, significantly altered the gene expression pattern of the cells compared to control (WPMY-Vec) cells. Treatment of WPMY-AR cells, but not WPMY-Vec control cells, with DHT resulted in further changes that affected the expression of 141 genes by 2-fold or greater compared to vehicle treated WPMY-AR cells. Remarkably, DHT significantly downregulated more genes than were upregulated but many of these changes reversed the initial effects of AR overexpression alone on individual genes. The genes most highly effected by DHT treatment were categorized based upon their role in cancer pathways or in cell signaling pathways (transforming growth factor-β, Wnt, Hedgehog and MAP Kinase) thought to be involved in stromal-epithelial crosstalk during prostate or prostate cancer development. DHT treatment of WPMY-AR cells was also sufficient to alter their paracrine potential for prostate cancer cells as conditioned medium from DHT-treated WPMY-AR significantly increased growth of LNCaP cells compared to DHT-treated WPMY-Vec cell conditioned medium.  相似文献   

19.
Prostate cancer is one of the most common malignancies, and microRNAs have been recognized to be involved in tumorigenesis of various kinds of cancer including prostate cancer (PCa). Androgen receptor (AR) plays a core role in prostate cancer progression and is responsible for regulation of numerous downstream targets including microRNAs. This study identified an AR-repressed microRNA, miR-421, in prostate cancer. Expression of miR-421 was significantly suppressed by androgen treatment, and correlated to AR expression in different prostate cancer cell lines. Furthermore, androgen-activated AR could directly bind to androgen responsive element (ARE) of miR-421, as predicted by bioinformatics resources and demonstrated by ChIP and luciferase reporter assays. In addition, over-expression of miR-421 markedly supressed cell viability, delayed cell cycle, reduced glycolysis and inhibited migration in prostate cancer cells. According to the result of miR-421 target genes searching, we focused on 4 genes NRAS, PRAME, CUL4B and PFKFB2 based on their involvement in cell proliferation, cell cycle progression and metabolism. The expression of these 4 downstream targets were significantly repressed by miR-421, and the binding sites were verified by luciferase assay. Additionally, we explored the expression of miR-421 and its target genes in human prostate cancer tissues, both in shared microarray data and in our own cohort. Significant differential expression and inverse correlation were found in PCa patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号