首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ponto-geniculo-occipital (PGO) activity is a characteristic field potential of paradoxical sleep, that can be continually induced by reserpine administration. It has been postulated that the X area (XA) and parabrachial lateral nucleus (Pbl) contain the generator cells for the PGO activity. In this study, repetitive electrical stimulation in the XA and Pbl was applied, with the aim of inducing progressive plastic changes in PGO activity, which was recorded from the lateral geniculate nucleus (LGN). Reserpinized cats were used; they were curarized and maintained with artificial respiration. We analyzed the PGO spike frequency at one, five and sixty minutes after stimulation, which was given every 30 minutes for at least 8 consecutive hours. Stimulation of the XA did not produce changes, while that of the Pbl induced a relatively poor progressive increment in the PGO spike frequency. The findings obtained with XA stimulation discard the possibility of inducing functional plastic changes in this region. On the other hand, the response to Pbl stimulation indicates an activation of the PGO spike generator system. These differences suggest that these nuclei have different influence on PGO activity, although it is possible that the responses found in the Pbl were indirect effects, given its anatomical relationships.  相似文献   

2.
These investigations are aimed at studying the influence of the electrical stimulation of the VIth nucleus (abducens nucleus) on responses of lateral geniculate cells in rabbits. The animals were prepared in the usual fashion for single cell recordings at the lateral geniculate nucleus (LGN). Results show that: Electrical stimulation of the VIth nucleus always produced excitatory discharges whose latency varied from 30 to 400 ms. Interestingly, an electrical pulse applied to the abducens nucleus was capable of enhancing the light-evoked responses without altering the spontaneous rate of firing. It thus seems that the ascending influence of the VIth nucleus manifests itself when it coincides with light responses. Most cells which were sensitive to electrical activation of the abducens nucleus had their receptive field located peripherally (greater than 50 degrees). Histological reconstructions of recording electrode tracts suggest that cells which responded to electrical stimulation were located in a narrow band lying dorsally relative to the LGN. This area can be paralleled with the perigeniculate area observed in other mammals, although not identified in rabbits. It is suggested that these extraretinal impulses which reach the LGN and emerge from an area surrounding the VIth nucleus are associated with corollary discharges.  相似文献   

3.
We examined lateral geniculate nucleus (LGN) degeneration as an indicator for possible diagnosis of glaucoma in experimental glaucoma monkeys using positron emission tomography (PET). Chronic intraocular pressure (IOP) elevation was induced by laser trabeculoplasty in the left eyes of 5 cynomolgus monkeys. Glial cell activation was detected by PET imaging with [(11)C]PK11195, a PET ligand for peripheral-type benzodiazepine receptor (PBR), before and at 4 weeks after laser treatment (moderate glaucoma stage). At mild, moderate, and advanced experimental glaucoma stages (classified by histological changes based on the extent of axonal loss), brains were stained with cresyl violet, or antibodies against PBR, Iba-1 (a microglial marker), and GFAP (an activated astrocyte marker). In laser-treated eyes, IOP was persistently elevated throughout all observation periods. PET imaging showed increased [(11)C]PK11195 binding potential in the bilateral LGN at 4 weeks after laser treatment; the increase in the ipsilateral LGN was statistically significant (P<0.05, n = 4). Immunostaining showed bilateral activations of microglia and astrocytes in LGN layers receiving input from the laser-treated eye. PBR-positive cells were observed in LGN layers receiving input from laser-treated eye at all experimental glaucoma stages including the mild glaucoma stage and their localization coincided with Iba-1 positive microglia and GFAP-positive astrocytes. These data suggest that glial activation occurs in the LGN at a mild glaucoma stage, and that the LGN degeneration could be detected by a PET imaging with [(11)C]PK11195 during the moderate experimental glaucoma stage after unilateral ocular hypertension. Therefore, activated glial markers such as PBR in the LGN may be useful in noninvasive molecular imaging for diagnosis of glaucoma.  相似文献   

4.
张一虹  李朝义 《生理学报》1986,38(4):357-366
记录了猫外膝体细胞和视交叉纤维对正弦调制光点刺激的反应,作成反应时间直方图(PSTH)。用博里叶分析方法测量不同时间频率下反应的基波相位,作相位-频率特性曲线(PFC)。在暗适应条件下用锥系统的阈下刺激分离出杆系统的反应,这时外膝体细胞的相-频特性为一条负斜率的直线。由斜率所推算的潜伏期平均为81ms。在间视条件下,用 Stiles的二色阈法,分离出锥系统的反应,在这种情况下,相-频特性出现一个十分明显的转折。低频段回归线所对应的潜伏期平均为 107ms,高频段为 39ms。用同样方法分析了神经节细胞(视交叉纤维)的相位-频率特性,结果与外膝体细胞相似,说明与锥系统及杆系统活动有关的时间频率通道在视网膜就已经形成。  相似文献   

5.
The cholinergic agonist carbachol was injected into the pontine Pb area where PGO bursting cells have been recorded. When microinjections were localized to the ventrolateral aspect of the caudal Pb nucleus near aggregates of ChAT immunolabeled cholinergic neurons, carbachol produced an immediate onset of state-independent PGO waves in the ipsilateral LGB. These state-independent PGO waves persisted for 3-4 days. After the first 24 hrs PGO wave activity increasingly became associated with REM sleep and with REM transitional SP sleep as both of these PGO-related states increased in amount to 3-4 times baseline levels. The increase in amount of PGO-related states peaked on days 2-4 following one carbachol injection and persisted for 10-12 days. These results suggest a two stage process: stage one, PGO enhancement, is the direct consequence of the membrane activation of cholinoceptive PGO burst neurons by carbachol; stage two, REM enhancement, is the consequence of metabolic activation of endogenous cholinergic neurons. This experimental preparation is a useful model for the study of the electrophysiology and functional significance of PGO wave and REM sleep generation.  相似文献   

6.
【目的】研制猪伪狂犬病毒(PRV)和猪圆环病毒2型(PCV2)的二联活疫苗,并用猪IL-18作为免疫佐剂。【方法】将猪IL-18基因插入到质粒p GO中,获得的重组转移质粒p GO18与猪PRV弱毒HB98株DNA共转染ST细胞,并进行空斑筛选和纯化;RT-PCR和Western blot分别从转录和蛋白水平鉴定其表达情况。将重组病毒PGO18和PGO、PRV弱毒株HB98、PCV2灭活商品苗和1640细胞培养基分别免疫6周龄雌性昆明小鼠,4周后二次免疫,二免后4周用PCV2 DF强毒和PRV Min/A强毒接种小鼠。通过ELISA、血清中和试验和流式细胞术及攻毒保护试验评价重组病毒的免疫原性。【结果】获得了重组病毒PGO18,并且可在ST细胞内表达;PGO18可诱导小鼠机体产生PCV2的ELISA和PRV的中和抗体水平,刺激CD3+、CD4+、CD8+T细胞亚群的增殖,且能有效抵抗PCV2和PRV强毒攻击。【结论】IL-18基因可增强重组病毒的免疫效果,使重组病毒具有良好的免疫原性,有望成为防治PCV2和PRV的候选疫苗株。  相似文献   

7.
目的 比较青年猫与老年猫外侧膝状体(lateral geniculate nucleus,LGN)星形胶质细胞(astrocyte,AS)中S100蛋白与胶质原纤维酸性蛋白(glial fibrillary acidic protein,GFAP)表达的年龄相关性变化,探讨导致相关变化的原因及其在动物视觉功能衰老中的意义。方法 免疫组织化学方法(SABC法)示S100蛋白阳性细胞及GFAP阳性细胞。光镜下观察、拍照,计数外侧膝状体各层中S100蛋白阳性细胞及GFAP阳性细胞数量。结果 与青年猫相比,老年猫外侧膝状体各层中S100蛋白与GFAP表达均有不同程度的显著增强(P〈0.01)。结论 动物视觉衰老进程中,外侧膝状体星形胶质细胞存在着明显的反应性胶质化(reactive gliosis),这种胶质化与老年动物视觉功能之间关系将在文中讨论。  相似文献   

8.
The spatial resolution of simple cells in cat visual cortex was measured by stimulation with pairs of 6 wide parallel light bars of various spacings. These double lines were moved across the receptive field and were taken as resolved if there was a 10% deflection between the double peak responses of cells. As a control, recordings were also made from several geniculate fibers. The smallest bar separations resolved by simple cells were larger than those which have been found for cells of the lateral geniculate nucleus (LGN), although the smallest cortical receptive field centers were as small as those of LGN-cells. The correlation between optimal resolving power of a cell and the width of its excitatory receptive field was much weaker in cortical simple cells than in LGN cells. In contrast to the LGN, the double line responses of most simple cells differ markedly from an additive superposition of two single line responses spaced according to the actual interline distance. As possible mechanisms underlying these nonlinearities three different connectivity schemes were investigated. Two of these models were based on receptive field concepts; the third one used intracortical circuits. Only the latter model could explain all the nonlinear effects seen in the neurophysiological experiments.  相似文献   

9.
To gain a deeper understanding of the transmission of visual signals from retina through the lateral geniculate nucleus (LGN), we have used a simple leaky integrate and-fire model to simulate a relay cell in the LGN. The simplicity of the model was motivated by two questions: (1) Can an LGN model that is driven by a retinal spike train recorded as synaptic (‘S’) potentials, but does not include a diverse array of ion channels, nor feedback inputs from the cortex, brainstem, and thalamic reticular nucleus, accurately simulate the LGN discharge on a spike-for-spike basis? (2) Are any special synaptic mechanisms, beyond simple summation of currents, necessary to model experimental recordings? We recorded cat relay cell responses to spatially homogeneous small or large spots, with luminance that was rapidly modulated in a pseudo-random fashion. Model parameters for each cell were optimized with a Simplex algorithm using a short segment of the recording. The model was then tested on a much longer, distinct data set consisting of responses to numerous repetitions of the noisy stimulus. For LGN cells that spiked in response to a sufficiently large fraction of retinal inputs, we found that this simplified model accurately predicted the firing times of LGN discharges. This suggests that modulations of the efficacy of the retino-geniculate synapse by pre-synaptic facilitation or depression are not necessary in order to account for the LGN responses generated by our stimuli, and that post-synaptic summation is sufficient.  相似文献   

10.
Age-related changes in nitric oxide production in the visual system have not been well characterized. Therefore, we used staining and image-processing approaches to describe changes in levels of neuronal nitric oxide synthase (nNOS), the NADPH-diaphorase (NADPH-d) histochemical marker, and 3-nitrotyrosine in the lateral geniculate nucleus (LGN) of young and aged rats. The LGN plays an important role in the visual system, as it acts as a visual relay nucleus. Quantitative analysis of NADPH-d-positive and nNOS-immunoreactive neurons revealed significant optical density increases in the dorsal LGN and ventral LGN of aged rats; however, no significant changes were observed in the number of neurons with age. 3-Nitrotyrosine immunoreactivity was increased in the dorsal LGN and ventral LGN of aged rats. These results indicate that increased nitric oxide production and peroxynitrite may be associated with alterations in visual function during aging.  相似文献   

11.
Kinetics of the low threshold T-type Ca2+ channel is studied with single electrode voltage damp technique on brain slices of the cat lateral geniculate nucleus (LGN). Space damp is dramatically improved by blocking various K+ and Na+ channels, decreasing Ca2+ current and selecting proper holding potentials. Results from this study are similar to those obtained from acutely dissociated LGN neurons of the rat, indicating that the kinetics of T-Ca2+ channels of the cat LGN neurons is the same as that of the rat LGN. The result reported previously on the cat LGN may result from a defect in space damp.  相似文献   

12.
It is shown that in nembutal anesthetized cats, a single stimulation of motor cortex (MC) causes a response in lateral geniculate nucleus (LGN). The development of this response had a conditioning effect on the LGN response evoked by stimulation of the contralateral superior colliculus (SC), markedly inhibiting it. The degree of this inhibition depended on the time interval between the cortical conditioning stimulation and the tectal test stimulation. A single conditioning MC stimulation did not noticeably change the LGN responses evoked by a light stimulus, but markedly inhibited visual responses from deep SC layers (those regions which on stimulation gave rise to LGN responses). From the results, it is suggested that the MC monitors the execution of tectal influences on LGN function at the tectal level rather than the geniculate level, and it is precisely by this means that it regulates saccadic suppression of LGN function, in the realization of which, as presumed earlier, the SC takes part.A. I. Karaev Institute of Physiology, Azerbaijan Academy of Sciences, Baku. Translated from Neirofiziologiya, Vol. 24, No. 4, July–August 1992.  相似文献   

13.
The lateral geniculate nucleus (LGN) of fetal Wistar rats was transplanted to the visual cortex (VC) of 33 neonatal Wistar rats. Histological examination showed transplanted cells in all the host brains. Intensively labeled cells were demonstrated in the transplant by labeling with true blue. Electrophysiological studies with brain slice preparations demonstrated that the transplanted LGN sent axons and made excitatory monosynaptic connections mainly in layer IV of the VC area 17. Corticogeniculate projections were also demonstrated in the transplanted LGN.  相似文献   

14.
1. The responses of single principal cells of the cat lateral geniculate nucleus (LGN) were recorded extracellulary from the optic radiation (OR) axons or intracellularly from the LGN. Electrical stimuli at different frequencies were applied to the optic tract (OT) to test the transneuronal and the synaptic signal transmission in the LGN. 2. The effect of acute deafferentation (by photocoagulation of the retinal receptive field) or of synaptic degeneration induced 2-4 days prior to the recording time on the LGN neuron signal transfer was studied. Immediately after deafferentation, the synaptic signal transfer by LGN neurons exhibits signs of hyperexcitability leading to multiple neuronal discharges. This acute deafferentation hyperexicitability is probably caused mainly by the disapperance of lateral inhibition mediated by LGN interneurons. The deafferentation hyperexcitability disappeared during electrical stimulation of the OT at frequencies greater than 10/sec. 3. With progressing degeneration of the synaptic terminals during the 2nd to 4th day after interruption of the optic nerve axoplasmic flow, the synaptic signal transfer by LGN neurons gradually deteriorates and ceases at the end of the fourth day. The signs of this deterioration (larger temporal scatter, increased exhaustability and reduced upper frequency limit of the transneuronal signal transmission and gradual reduction of the EPSP amplitude in D-neurons) were quantitatively investigated. 4. The neurophysiological data obtained at different levels of synaptic terminal degeneration are well correlated with morphological changes found within the degenerating synaptic terminals.  相似文献   

15.
We employ a number of statistical measures to characterize neural discharge activity in cat retinal ganglion cells (RGCs) and in their target lateral geniculate nucleus (LGN) neurons under various stimulus conditions, and we develop a new measure to examine correlations in fractal activity between spike-train pairs. In the absence of stimulation (i.e., in the dark), RGC and LGN discharges exhibit similar properties. The presentation of a constant, uniform luminance to the eye reduces the fractal fluctuations in the RGC maintained discharge but enhances them in the target LGN discharge, so that neural activities in the pair cease to be mirror images of each other. A drifting-grating stimulus yields RGC and LGN driven spike trains similar in character to those observed in the maintained discharge, with two notable distinctions: action potentials are reorganized along the time axis so that they occur only during certain phases of the stimulus waveform, and fractal activity is suppressed. Under both uniform-luminance and drifting-grating stimulus conditions (but not in the dark), the discharges of pairs of LGN cells are highly correlated over long time scales; in contrast discharges of RGCs are nearly uncorrelated with each other. This indicates that action-potential activity at the LGN is subject to a common fractal modulation to which the RGCs are not subjected.  相似文献   

16.
Intracellular recordings using standard current clamp techniques were performed on projection cells of the rat lateral geniculate nucleus (LGN) in vitro. These cells are generally quiescent in vitro but when magnesium was removed from the perfusion medium they invariably showed rhythmic depolarizations (15-20 mV, 210-320 ms) that occurred at a frequency of 1.5-2 Hz and evoked 1 to 4 action potentials. This activity was completely blocked by micromolar concentrations of magnesium (50-150 microM) while tetrodotoxine (1 microM) abolished the action potentials but left the underlying rhythmic depolarizations unchanged. These results demonstrate that rat LGN projection cells are capable of producing rhythmic depolarizations in vitro and suggest the possibility that NMDA receptors might be involved in these rhythmic oscillations.  相似文献   

17.
Effects of the arginyl- and lysyl-specific reagent phenylglyoxal (PGO) on the epithelial Na+ channel were evaluated by measuring the amiloride-blockable 22Na+ fluxes in membrane vesicles derived from the toad bladder epithelium. Incubating whole cells or isolated membranes with PGO readily and irreversibly blocked the channel-mediated tracer flux. Na+ ions present during the interaction of membranes with PGO could protect channels from inactivation by PGO. This effect required the presence of Na+ at the luminal side of the membrane and was characterized by an IC50 of 79 mM Na+. Amiloride, too, could desensitize channels to PGO, but its effect was significant only when whole cells were interacted with the protein-modifying reagent. The data are compatible with a model in which the conductive path of the channel contains a functional arginine, possibly forming a salt bridge with a carboxylic group, which is involved in Na+ translocation and amiloride binding. It was also shown that the augmentation of transport induced by incubating whole cells in Ca2+-free solution (Garty, H., and Asher, C. (1985) J. Biol. Chem. 260, 8330-8335) involves the activation or recruitment of channels that are not vulnerable to PGO prior to incubation.  相似文献   

18.
Simultaneous Recording of Input and Output of Lateral Geniculate Neurones   总被引:3,自引:0,他引:3  
TO understand the way in which the cat dorsal lateral geniculate nucleus (LGN) processes visual information it would be useful to know the number and type of retinal inputs to individual LGN neurones. Using electrical stimulation of the optic nerve Bishop et al.1concluded that an impulse in a single optic nerve fibre is sufficient to excite a single LGN neurone. From the appearance of excitatory postsynaptic potentials (EPSPs) recorded essentially intracellularly, Creutzfeldt suggested that LGN neurones are driven by perhaps one2 or a few3 retinal ganglion cells. Hubel and Wiesel4 proposed models of convergence of several retinal inputs on single LGN neurones based on analyses of receptive fields. Guillery5 produced anatomical evidence that some types of LGN neurones receive inputs from several different retinal fibres. Now we report direct observations which were made by recording simultaneously from single LGN neurones and from individual retinal ganglion cells which provided excitatory input to them. We shall not consider inhibitory influences, which are currently under study.  相似文献   

19.
The receptive fields of cells in the lateral geniculate nucleus (LGN) are shaped by their diverse set of impinging inputs: feedforward synaptic inputs stemming from retina, and feedback inputs stemming from the visual cortex and the thalamic reticular nucleus. To probe the possible roles of these feedforward and feedback inputs in shaping the temporal receptive-field structure of LGN relay cells, we here present and investigate a minimal mechanistic firing-rate model tailored to elucidate their disparate features. The model for LGN relay ON cells includes feedforward excitation and inhibition (via interneurons) from retinal ON cells and excitatory and inhibitory (via thalamic reticular nucleus cells and interneurons) feedback from cortical ON and OFF cells. From a general firing-rate model formulated in terms of Volterra integral equations, we derive a single delay differential equation with absolute delay governing the dynamics of the system. A freely available and easy-to-use GUI-based MATLAB version of this minimal mechanistic LGN circuit model is provided. We particularly investigate the LGN relay-cell impulse response and find through thorough explorations of the model’s parameter space that both purely feedforward models and feedback models with feedforward excitation only, can account quantitatively for previously reported experimental results. We find, however, that the purely feedforward model predicts two impulse response measures, the time to first peak and the biphasic index (measuring the relative weight of the rebound phase) to be anticorrelated. In contrast, the models with feedback predict different correlations between these two measures. This suggests an experimental test assessing the relative importance of feedforward and feedback connections in shaping the impulse response of LGN relay cells.  相似文献   

20.
The amygdala plays a central role in fear conditioning, a model of anticipatory anxiety. It has massive projections to brainstem regions involved in rapid eye movement sleep (REM) and ponto-geniculo-occipital (PGO) wave generation. PGO waves occur spontaneously in REM or in response to stimuli. Electrical stimulation of the central nucleus of the amygdala enhances spontaneous PGO wave activity during REM and the amplitude of both the acoustic startle response and the elicited PGO wave (PGOE), a neural marker of alerting. This study examined the effects of fear conditioning on REM and on PGOE. On conditioning days, the number of REM episodes, the average REM duration and the REM percentage were decreased while REM latency was increased. The presentation of auditory stimuli in the presence of a light conditioned stimulus produced PGOE of greater amplitudes. The results suggest that fear, most likely involving the amygdala, can influence REM and brainstem alerting mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号