首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A striking feature of the organization of the early visual pathway is the significant feedback from primary visual cortex to cells in the dorsal lateral geniculate nucleus (LGN). Despite numerous experimental and modeling studies, the functional role for this feedback remains elusive. We present a new firing-rate-based model for LGN relay cells in cat, explicitly accounting for thalamocortical loop effects. The established DOG model, here assumed to account for the spatial aspects of the feedforward processing of visual stimuli, is extended to incorporate the influence of thalamocortical loops including a full set of orientation-selective cortical cell populations. Assuming a phase-reversed push-pull arrangement of ON and OFF cortical feedback as seen experimentally, this extended DOG (eDOG) model exhibits linear firing properties despite non-linear firing characteristics of the corticothalamic cells. The spatiotemporal receptive field of the eDOG model has a simple algebraic structure in Fourier space, while the real-space receptive field, as well as responses to visual stimuli, are found by evaluation of an integral. As an example application we use the eDOG model to study effects of cortical feedback on responses to flashing circular spots and patch-grating stimuli and find that the eDOG model can qualitatively account for experimental findings.  相似文献   

2.
The influence of cortical feedback on thalamic visual responses has been a source of much discussion in recent years. In this study we examine the possible role of cortical feedback in shaping the spatiotemporal receptive field (STRF) responses of thalamocortical (TC) cells in the lateral geniculate nucleus (LGN) of the thalamus. A population-based computational model of the thalamocortical network is used to generate a representation of the STRF response of LGN TC cells within the corticothalamic feedback circuit. The cortical feedback is shown to have little influence on the spatial response properties of the STRF organization. However, the model suggests that cortical feedback may play a key role in modifying the experimentally observed biphasic temporal response property of the STRF, that is, the reversal over time of the polarity of ON and OFF responses of the centre and surround of the receptive field, in particular accounting for the experimentally observed mismatch between retinal cells and TC cells in respect of the magnitude of the second (rebound) phase of the temporal response. The model results also show that this mismatch may result from an anti-phase corticothalamic feedback mechanism.  相似文献   

3.
Brightness contrast effects shown by single cells in the macaque's lateral geniculate nucleus were studied with black and white lines of various widths, consisting of either: (1) "simultaneous contrast" stimuli in which the line was produced by luminance changes in the flanking areas or (2) "successive contrast" stimuli in which the line itself changed in luminance. Line widths that gave optimal responses and response magnitudes themselves were similar for the two types of stimulus, except for the widest lines used (2 degrees). Thus, simultaneous brightness contrast is a primary determinant of the response of primate LGN cells but only within 2 degrees of the center of the receptive field. Neural processing up to this level cannot therefore explain the long distance effects of simultaneous brightness contrast in human perception.  相似文献   

4.
Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including lateral geniculate nucleus (LGN), primary visual cortex (V1), and middle temporal area (MT). We describe a hierarchical model of predictive coding and simulations that capture these temporal variations in neuronal response properties. We focus on the LGN-V1 circuit and find that after training on natural images the model exhibits the brain's LGN-V1 connectivity structure, in which the structure of V1 receptive fields is linked to the spatial alignment and properties of center-surround cells in the LGN. In addition, the spatio-temporal response profile of LGN model neurons is biphasic in structure, resembling the biphasic response structure of neurons in cat LGN. Moreover, the model displays a specific pattern of influence of feedback, where LGN receptive fields that are aligned over a simple cell receptive field zone of the same polarity decrease their responses while neurons of opposite polarity increase their responses with feedback. This phase-reversed pattern of influence was recently observed in neurophysiology. These results corroborate the idea that predictive feedback is a general coding strategy in the brain.  相似文献   

5.
6.
Mante V  Bonin V  Carandini M 《Neuron》2008,58(4):625-638
Functional models of the early visual system should predict responses not only to simple artificial stimuli but also to sequences of complex natural scenes. An ideal testbed for such models is the lateral geniculate nucleus (LGN). Mechanisms shaping LGN responses include the linear receptive field and two fast adaptation processes, sensitive to luminance and contrast. We propose a compact functional model for these mechanisms that operates on sequences of arbitrary images. With the same parameters that fit the firing rate responses to simple stimuli, it predicts the bulk of the firing rate responses to complex stimuli, including natural scenes. Further improvements could result by adding a spiking mechanism, possibly one capable of bursts, but not by adding mechanisms of slow adaptation. We conclude that up to the LGN the responses to natural scenes can be largely explained through insights gained with simple artificial stimuli.  相似文献   

7.
Alitto HJ  Usrey WM 《Neuron》2008,57(1):135-146
In addition to the classical, center/surround receptive field of neurons in the lateral geniculate nucleus (LGN), there is an extraclassical, nonlinear surround that can strongly suppress LGN responses. This form of suppression likely plays an important role in adjusting the gain of LGN responses to visual stimuli. We performed experiments in alert and anesthetized macaque monkies to quantify extraclassical suppression in the LGN and determine the roles of feedforward and feedback pathways in the generation of LGN suppression. Results show that suppression is significantly stronger among magnocellular neurons than parvocellular neurons and that suppression arises too quickly for involvement from cortical feedback. Furthermore, the amount of suppression supplied by the retina is not significantly different from that in the LGN. These results indicate that extraclassical suppression in the macaque LGN relies on feedforward mechanisms and suggest that suppression in the cortex likely includes a component established in the retina.  相似文献   

8.
The responses to visual stimuli of simple cortical cells show linear spatial summation within and between their receptive field subunits. Complex cortical cells do not show this linearity. We analyzed the simulated responses to drifting sinusoidal grating stimuli of simple and of several types of complex cells. The complex cells, whose responses are seen to be half-wave rectified before pooling, have receptive fields consisting of two or more DOG (difference-of-Gaussians) shaped subunits. In both cases of stimulation by contrast-reversal gratings or drifting gratings, the cells' response as a function of spatial frequency is affected by the subunit distances 2 and the stimulation frequency . Furthermore, an increased number of subunits (a larger receptive field) yields a narrower peak tuning curve with decreased modulation depth for many of the spatial frequencies. The average and the peak response tuning curves are compared for the different receptive field types.  相似文献   

9.
These investigations are aimed at studying the influence of the electrical stimulation of the VIth nucleus (abducens nucleus) on responses of lateral geniculate cells in rabbits. The animals were prepared in the usual fashion for single cell recordings at the lateral geniculate nucleus (LGN). Results show that: Electrical stimulation of the VIth nucleus always produced excitatory discharges whose latency varied from 30 to 400 ms. Interestingly, an electrical pulse applied to the abducens nucleus was capable of enhancing the light-evoked responses without altering the spontaneous rate of firing. It thus seems that the ascending influence of the VIth nucleus manifests itself when it coincides with light responses. Most cells which were sensitive to electrical activation of the abducens nucleus had their receptive field located peripherally (greater than 50 degrees). Histological reconstructions of recording electrode tracts suggest that cells which responded to electrical stimulation were located in a narrow band lying dorsally relative to the LGN. This area can be paralleled with the perigeniculate area observed in other mammals, although not identified in rabbits. It is suggested that these extraretinal impulses which reach the LGN and emerge from an area surrounding the VIth nucleus are associated with corollary discharges.  相似文献   

10.
A computer model of the simple cells in the mammalian visual cortex was constructed. The model cells received inputs from a great number of isopolar centre/surround cells assumed to be located in the lateral geniculate nucleus (LGN). The distribution of input to the model simple cells was either inhibitory/excitatory or inhibitory/excitatory/inhibitory. Such arrangements produced receptive fields containing four or five consecutively antagonistic subfields. Responses produced by the model cells to different types of stimuli (periodical as well as nonperiodical) were obtained and compared to responses of living cells reported from various laboratories under comparable stimulus conditions. In all the situations tested, the responses of the model cells corresponded qualitatively very well to those of living cells. It was seen that the same wiring mechanism was able to account for orientation selectivity, spatial frequency filtering, various phase relationships between stimulus and response, subfield orientational selectivity, and slight end-inhibition. Furthermore, the receptive fields of the model simple cells closely resemble Gabor functions.  相似文献   

11.
Sadagopan S  Ferster D 《Neuron》2012,74(5):911-923
Contrast invariant orientation tuning in simple cells of the visual cortex depends critically on contrast dependent trial-to-trial variability in their membrane potential responses. This observation raises the question of whether this variability originates from within the cortical circuit or the feedforward inputs from the lateral geniculate nucleus (LGN). To distinguish between these two sources of variability, we first measured membrane potential responses while inactivating the surrounding cortex, and found that response variability was nearly unaffected. We then studied variability in the LGN, including contrast dependence, and the trial-to-trial correlation in responses between nearby neurons. Variability decreased significantly with contrast, whereas correlation changed little. When these experimentally measured parameters of variability were applied to a feedforward model of simple cells that included realistic mechanisms of synaptic integration, contrast-dependent, orientation independent variability emerged in the membrane potential responses. Analogous mechanisms might contribute to the stimulus dependence and propagation of variability throughout the neocortex.  相似文献   

12.
The purpose of this study was to explore the effects of spatial and temporal properties on the expected responses of visual neurons that have linear receptive fields (RFs), particularly those having a mirror symmetric distribution of spatial subregions. Receptive fields that are symmetric in at least one spatial dimension occur in neurons of the retina, the lateral geniculate nucleus (LGN), and the visual cortex of mammals. Responses to flashing bars, moving bars, and moving edges were studied for different configurations of an analog RF model in which spatial and temporal aspects were varied independently. Responses of the model at intermediate stimulus speeds were found to agree with responses in the literature for X and Y units of the LGN and often for simple units of the visual cortex. In particular, having separated regions of response to light and dark edges, an identifying property of simple cells, was found to be a linear consequence of RF regions responding inversely to stimuli of opposite polarity. Model differences from responses of cortical complex units show that a linear model cannot mimic their responses, and imply that complex units employ major nonlinearities in coding image polarity (light vs dark), which signifies a nonlinearity in coding intensity. Because sudden flux changes inherent in flashing bars test mainly temporal RF properties, and slowly moving edges test mainly spatial properties, these two tests form a useful minimal set with which to describe and classify RFs. The usefulness of this set derives both from its sensitivity to spatial and temporal variables, and from the correlation between the linearity of a cell's processing of stimulus intensity and its RF classification.  相似文献   

13.
The initial stage of information processing by the visual system reduces the information contained in the continuous image on the retina into a discrete set of responses which are carried from the lateral geniculate nucleus (LGN) to the visual cortex.-1. The optimal sampling of the light intensity distribution in the visual environment is achieved only if each channel in the visual pathways carries undistorted information corresponding to an image element. The visual system approaches as closely as possible the scheme of optimal spatial sampling, retaining the full information on the low spatial frequency content of the object light intensity. The ideal receptive field of a sustained LGN cell is then of the form J 1 (Kr)/Kr.-2. The experimentally determined receptive fields of sustained LGN cells (and to some extent retinal ganglion cells as well) in cat closely resemble the functional form J 1 (Kr)/Kr. The centre-surround organization of the receptive fields is therefore understood as a scheme which leads to a maximal information flow through the visual pathways.-3. The optimal sampling scheme cannot be realized by the retina alone, because of restrictions on the size of neural networks. It is therefore constructed in two stages, ending at the LGN level. A recombination of ganglion cell signals into optimal receptive fields is a major role of the LGN.  相似文献   

14.
Lau C  Zhou IY  Cheung MM  Chan KC  Wu EX 《PloS one》2011,6(4):e18914

Background

The superior colliculus (SC) and lateral geniculate nucleus (LGN) are important subcortical structures for vision. Much of our understanding of vision was obtained using invasive and small field of view (FOV) techniques. In this study, we use non-invasive, large FOV blood oxygenation level-dependent (BOLD) fMRI to measure the SC and LGN''s response temporal dynamics following short duration (1 s) visual stimulation.

Methodology/Principal Findings

Experiments are performed at 7 tesla on Sprague Dawley rats stimulated in one eye with flashing light. Gradient-echo and spin-echo sequences are used to provide complementary information. An anatomical image is acquired from one rat after injection of monocrystalline iron oxide nanoparticles (MION), a blood vessel contrast agent. BOLD responses are concentrated in the contralateral SC and LGN. The SC BOLD signal measured with gradient-echo rises to 50% of maximum amplitude (PEAK) 0.2±0.2 s before the LGN signal (p<0.05). The LGN signal returns to 50% of PEAK 1.4±1.2 s before the SC signal (p<0.05). These results indicate the SC signal rises faster than the LGN signal but settles slower. Spin-echo results support these findings. The post-MION image shows the SC and LGN lie beneath large blood vessels. This subcortical vasculature is similar to that in the cortex, which also lies beneath large vessels. The LGN lies closer to the large vessels than much of the SC.

Conclusions/Significance

The differences in response timing between SC and LGN are very similar to those between deep and shallow cortical layers following electrical stimulation, which are related to depth-dependent blood vessel dilation rates. This combined with the similarities in vasculature between subcortex and cortex suggest the SC and LGN timing differences are also related to depth-dependent dilation rates. This study shows for the first time that BOLD responses in the rat SC and LGN following short duration visual stimulation are temporally different.  相似文献   

15.
Siddiqui MS  Bhaumik B 《PloS one》2011,6(10):e24997
Decades of experimental studies are available on disparity selective cells in visual cortex of macaque and cat. Recently, local disparity map for iso-orientation sites for near-vertical edge preference is reported in area 18 of cat visual cortex. No experiment is yet reported on complete disparity map in V1. Disparity map for layer IV in V1 can provide insight into how disparity selective complex cell receptive field is organized from simple cell subunits. Though substantial amounts of experimental data on disparity selective cells is available, no model on receptive field development of such cells or disparity map development exists in literature. We model disparity selectivity in layer IV of cat V1 using a reaction-diffusion two-eye paradigm. In this model, the wiring between LGN and cortical layer IV is determined by resource an LGN cell has for supporting connections to cortical cells and competition for target space in layer IV. While competing for target space, the same type of LGN cells, irrespective of whether it belongs to left-eye-specific or right-eye-specific LGN layer, cooperate with each other while trying to push off the other type. Our model captures realistic 2D disparity selective simple cell receptive fields, their response properties and disparity map along with orientation and ocular dominance maps. There is lack of correlation between ocular dominance and disparity selectivity at the cell population level. At the map level, disparity selectivity topography is not random but weakly clustered for similar preferred disparities. This is similar to the experimental result reported for macaque. The details of weakly clustered disparity selectivity map in V1 indicate two types of complex cell receptive field organization.  相似文献   

16.
We present a model for development of orientation selectivity in layer IV simple cells. Receptive field (RF) development in the model, is determined by diffusive cooperation and resource limited competition guided axonal growth and retraction in geniculocortical pathway. The simulated cortical RFs resemble experimental RFs. The receptive field model is incorporated in a three-layer visual pathway model consisting of retina, LGN and cortex. We have studied the effect of activity dependent synaptic scaling on orientation tuning of cortical cells. The mean value of hwhh (half width at half the height of maximum response) in simulated cortical cells is 58° when we consider only the linear excitatory contribution from LGN. We observe a mean improvement of 22.8° in tuning response due to the non-linear spiking mechanisms that include effects of threshold voltage and synaptic scaling factor.  相似文献   

17.
It is shown that in nembutal anesthetized cats, a single stimulation of motor cortex (MC) causes a response in lateral geniculate nucleus (LGN). The development of this response had a conditioning effect on the LGN response evoked by stimulation of the contralateral superior colliculus (SC), markedly inhibiting it. The degree of this inhibition depended on the time interval between the cortical conditioning stimulation and the tectal test stimulation. A single conditioning MC stimulation did not noticeably change the LGN responses evoked by a light stimulus, but markedly inhibited visual responses from deep SC layers (those regions which on stimulation gave rise to LGN responses). From the results, it is suggested that the MC monitors the execution of tectal influences on LGN function at the tectal level rather than the geniculate level, and it is precisely by this means that it regulates saccadic suppression of LGN function, in the realization of which, as presumed earlier, the SC takes part.A. I. Karaev Institute of Physiology, Azerbaijan Academy of Sciences, Baku. Translated from Neirofiziologiya, Vol. 24, No. 4, July–August 1992.  相似文献   

18.
Simultaneous Recording of Input and Output of Lateral Geniculate Neurones   总被引:3,自引:0,他引:3  
TO understand the way in which the cat dorsal lateral geniculate nucleus (LGN) processes visual information it would be useful to know the number and type of retinal inputs to individual LGN neurones. Using electrical stimulation of the optic nerve Bishop et al.1concluded that an impulse in a single optic nerve fibre is sufficient to excite a single LGN neurone. From the appearance of excitatory postsynaptic potentials (EPSPs) recorded essentially intracellularly, Creutzfeldt suggested that LGN neurones are driven by perhaps one2 or a few3 retinal ganglion cells. Hubel and Wiesel4 proposed models of convergence of several retinal inputs on single LGN neurones based on analyses of receptive fields. Guillery5 produced anatomical evidence that some types of LGN neurones receive inputs from several different retinal fibres. Now we report direct observations which were made by recording simultaneously from single LGN neurones and from individual retinal ganglion cells which provided excitatory input to them. We shall not consider inhibitory influences, which are currently under study.  相似文献   

19.
外膝体是视觉信息进入新皮层的主要通路,其编码亮度信息的神经机制还不清楚.我们采用随机呈现的连续快速变化(50 Hz)的均匀亮度刺激,显著地提高了猫外膝体神经元对均匀亮度的反应强度,通过反相关算法抽提出神经元的亮度反应函数.约81%的神经元的亮度反应函数为单调性上升或下降,有19%的神经元亮度反应函数为V型.通过分析这些神经元对亮度上升和下降的反应强度与感受野ON和OFF反应强度的关系,表明83%的神经元对亮度的反应模式是由其感受野ON-OFF反应的相对强度决定的,其余17%则与其感受野ON-OFF区的兴奋和抑制的变化相关.这些结果揭示了外膝体神经元编码亮度变化的机制.  相似文献   

20.
We present a spike-triggered averaging method capable of mapping the visual receptive fields of several neurons simultaneously. The stimulation is general and the mapping proceeds automatically without the need to match the stimulation to the cells' preference for position, orientation, direction, etc. The maps are spatiotemporal; receptive field (RF) structures are quantitatively determined in three dimensions: the two dimensions of visuotopic space, and time. The method presented is one of a family of reverse correlation or spike-triggered averaging techniques (DeBoer and Kuyper 1968) capable of revealing linear aspects of stimulus-response coupling. The formal relationship of these methods to stimulus-response crosscorrelation is shown. The analysis is extended to provide some second-order axis-of-motion information (direction marks). The stimulus is a constantly illuminated, randomly jumping bright or dark spot, not an elongated bar. Spot diameters between one-third to 1 × RF width are effective. The method ascertains for each recorded action potential or spike the prior visual field position of the spot. The average or most probable spot positions define the receptive field spatially. Repeating the process for a succession of times prior to observed spikes defines the field temporally, presented here as a succession of spatial maps. We term this portrayal a receptive field cinematogram, RFc or ciné. The RFc reveals and economically portrays the spread of excitability and suppression across the receptive field, culminating in the generation of a spike. RFcs for LGN neurons and for simple cells recorded in cat cortical areas 17 and 18 are presented and interpreted in terms of classic ON/OFF regions. The availability of temporal information permits the separation of an excitatory exit response, generated when a moving bright spot leaves an OFF region, from an excitatory entrance response occurring when a bright spot enters an ON region, because these responses occur at different times (exit responses earlier). Spike emission remains coupled to (cross-correlated with) stimulus events over time periods as long as 96 ms, implying that some stimulus drive or afferent visual input is delayed by as much as 96 ms more than other input. This is a striking instance of temporal dispersion in the visual system. In some cells, said to be spatiotemporally inseparable, the delay (latency) varies systematically across the visual field; i.e., the place for optimal stimulation varies with the time prior to spike emission. In these cells, the RFc shows receptive field structures which move across the visual field over trajectories equal to approximately twice the total conventional RF width. Exit and entrance responses, on the other hand, arise in a simple way from separated ON and OFF RF subregions. ON/ OFF mechanisms thus appear unrelated to spatiotemporal inseparability. The RFc method is easily automated, efficient, and characterizes multiple RFs simultaneously, as required in work with multiple electrode arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号