首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Interactions between the mycorrhizal fungus Glomus monosporum and the root rot pathogen Thielaviopsis basicola and their effects on tobacco plants were investigated over a 4 week period. Mycorrhizal tobacco plants, obtained by preinoculation with G. monosporum, showed a better tolerance to T. basicola than non-mycorrhizal seedlings. Root and leaf dry weights of mycorrhizal plants were greater than those of controls. Mycorrhizal plants inoculated with T. basicola showed higher root and leaf dry weights than non-mycorrhizal infected plants, but lower values than mycorrhizal plants which were not infected. No appreciable differences in free aminoacid composition were observed among the different treatments with two exceptions: proline content was higher in infected and mycorrhizal infected plants compared to control and mycorrhizal plants; arginine content was higher in infected and mycorrhizal infected plants compared to control and mycorrhizal plants; arginine content was higher in mycorrhizal plants than in all the other treatments. The mechanisms by which (VAM) fungi can reduce disease incidence and pathogen development are discussed.  相似文献   

2.
The effect of root exudates from mycorrhizal and non-mycorrhizal tomato plants on microconidia germination of the tomato pathogen Fusarium oxysporum f. sp. lycopersici was tested. Microconidia germination was enhanced in the presence of root exudates from mycorrhizal tomato plants. Tomato plants were colonised by the arbuscular mycorrhizal fungus Glomus fasciculatum, indicating that alterations of the exudation pattern depended on the degree of root AM colonisation. Testing the exudates from plants with a high and a low P level revealed that the alterations of the root exudates from mycorrhizal plants, resulting in a changed effect on microconidia germination, are not due to an improved P status of mycorrhizal plants.  相似文献   

3.
The effect of root exudates from mycorrhizal and non-mycorrhizal tomato plants on microconidia germination of the tomato pathogen Fusarium oxysporum f. sp. lycopersici was tested. Microconidia germination was enhanced in the presence of root exudates from mycorrhizal tomato plants. The more tomato plants were colonized by the arbuscular mycorrhizal fungus Glomus mosseae, the more microconidia germination was increased, indicating that alterations of the exudation pattern depended on the degree of root AM colonization. Moreover, alterations of the exudation pattern of mycorrhizal plants are not only local, but also systemic. Testing the exudates from plants with a high and a low P level revealed that the alterations of the root exudates from mycorrhizal plants, resulting in a changed effect on microconidia germination, are not due to an improved P status of mycorrhizal plants.  相似文献   

4.
Summary The objective of this study was to determine whether infection of Avena fatua L. plants by the mycorrhizal fungus Glomus intraradices Schenck & Smith could influence the vigor of the offspring generation. Two experiments demonstrated that mycorrhizal infection of the maternal generation had slight but persistent positive effects on offspring leaf expansion in the early stages of growth. In two other experiments, mycorrhizal infection of mother plants had several long lasting effects on their offspring. Offspring produced by mycorrhizal mother plants had greater leaf areas, shoot and root nutrient contents and root:shoot ratios compared to those produced by non-mycorrhizal mother plants. Moreover, mycorrhizal infection of mother plants significantly reduced the weight of individual seeds produced by offspring plants while it increased the P concentrations of the seeds and the number of seeds per spikelet produced by offspring plants. The effects of mycorrhizal infections of maternal plants on the vigor and performance of offspring plants were associated with higher seed phosphorus contents but generally lighter seeds. The results suggest that mycorrhizal infection may influence plant fitness by increasing offspring vigor and offspring reproductive success in addition to previously reported increases in maternal fecundity.  相似文献   

5.
 The effect of root exudates from onions differing in P status on spore germination and hyphal growth of arbuscular mycorrhizal fungi was investigated. Onion (Allium cepa) was grown in solution culture at different phosphorus concentrations (0, 0.1, 1.0, 8.0 and 24.0 mg P l–1) and root exudates were collected. When spores of the arbuscular mycorrhizal fungus, Gigaspora margarita were incubated with these root exudates, spore germination was only slightly affected but hyphal growth was greatly affected, particularly with exudates from P-deficient plants. This suggests that the P nutrition of host plants influences the composition of root exudates and thereby the hyphal growth of arbuscular mycorrhizal fungi. Accepted: 25 June 1995  相似文献   

6.
Plant growth and phosphorus (P) uptake of two selections of rye (Secale cereale L.) differing in length of root hairs, in response to mycorrhizal infection were investigated. Rye plants with short root hairs (SRH) had a greater length of root infected by Glomus intraradices (up to 32 m pot–1) than those with long root hairs (LRH) (up to 10 m pot–1). Application of P decreased the percentage of root length infected in both selections. In low-P soil, mycorrhizal infection increased shoot and root P concentration, especially in LRH plants. Generally, LRH had higher shoot dry weight than SRH plants. P uptake was increased both by LRH and by mycorrhizal infection. Differences in specific P uptake and P utilization efficiency between SRH and LRH plants were observed in non-mycorrhizal plants. With low P supply, P utilization efficiency (dry matter yield per unit of P taken up) of LRH plants increased with time. However, mycorrhizal infection reduced P utilization efficiency, particularly of SRH plants. SRH plants, which were agronomically less efficient (i.e. low dry matter yield at low P supply) were more responsive to either mycorrhizal infection or P addition than the LRH plants. No interaction was observed between mycorrhizal infection and root hair length.  相似文献   

7.
Summary Studies examined net photosynthesis (Pn) and dry matter production of mycorrhizal and nonmycorrhizalPinus taeda at 6 intervals over a 10-month period. Pn rates of mycorrhizal plants were consistently greater than nonmycorrhizal plants, and at 10 months were 2.1-fold greater. Partitioning of current photosynthate was examined by pulse-labelling with14CO2 at each of the six time intervals. Mycorrhizal plants assimilated more14CO2, allocated a greater percentage of assimilated14C to the root systems, and lost a greater percentage of14C by root respiration than did nonmycorrhizal plants. At 10 months, the quantity of14CO2 respired by roots per unit root weight was 3.6-fold greater by mycorrhizal than nonmycorrhizal plants. Although the stimulation of photosynthesis and translocation of current photosynthate to the root system by mycorrhiza formation was consistent with the source-sink concept of sink demand, foliar N and P concentrations were also greater in mycorrhizal plants.Further studies examined Pn and dry matter production ofPinus contorta in response to various combinations of N fertilization (3, 62, 248 ppm), irradiance and mycorrhizal fungi inoculation. At 16 weeks of age, 6 weeks following inoculation with eitherPisolithus tinctorius orSuillus granulatus, Pn rates and biomass were significantly greater in mycorrhizal than nonmycorrhizal plants. Mycorrhizal plants had significantly greater foliar %P, but not %N, than did nonmycorrhizal plants. Fertilization with 62 ppm N resulted in greater mycorrhiza formation than either 3 or 248 ppm. Increased irradiance resulted in increased mycorrhiza formation.  相似文献   

8.
A. R. Hashem 《Mycorrhiza》1995,5(4):289-291
The role of mycorrhizal infection in the resistance of Vaccinium macrocarpon to manganese was investigated in perlite culture containing nutrient solution amended with Mn at 0, 250, 500 or 1000 g/ml. Shoot and root dry weights of the mycorrhizal plants were higher than nonmycorrhizal plants. The mycorrhizal plants produced significantly longer main roots than the nonmycorrhizal plants. Differences between shoot and root Mn concentrations of mycorrhizal and nonmycorrhizal plants arose by reduction of Mn in the leaves of mycorrhizal plants and a corresponding increase in root tissues.  相似文献   

9.
Glomus mosseae and the two pod rot pathogens Fusarium solani and Rhizoctonia solani and subsequent effects on growth and yield of peanut (Arachis hypogaea L.) plants were investigated in a greenhouse over a 5-month period. At plant maturity, inoculation with F. solani and/or R. solani significantly reduced shoot and root dry weights, pegs and pod number and seed weight of peanut plants. In contrast, the growth response and biomass of peanut plants inoculated with G. mosseae was significantly higher than that of non-mycorrhizal plants, both in the presence and absence of the pathogens. Plants inoculated with G. mosseae had a lower incidence of root rot, decayed pods, and death than non-mycorrhizal ones. The pathogens either alone or in combination reduced root colonization by the mycorrhizal fungus. Propagule numbers of each pathogen isolated from pod shell, seed, carpophore, lower stem and root were significantly lower in mycorrhizal plants than in the non-mycorrhizal plants. Thus, G. mosseae protected peanut plants from infection by pod rot fungal pathogens. Accepted: 10 February 2000  相似文献   

10.
The purpose of this study was to analyze morphological and physiological aspects of Arbutus unedo L. plants treated with paclobutrazol (PAC), compounds characterized by their double activity as plant growth regulators and fungicides, and the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch, which forms a special type of mycorrhizal colonization called arbutoid mycorrhiza. Native A. unedo L. seedlings were grown in a greenhouse and subjected to four treatments for 4 months: 0 or 60 mg of PAC and inoculated or not with P. tinctorius (Pers.). The arbutoid mycorrhizal inoculation increased in plants treated with PAC. Paclobutrazol reduced shoot and root biomass, plant height, internode length, stem diameter, leaf area, total root length and number of tips. P. tinctorius increased plant height and had a beneficial effect on the root system (increasing root diameter and the number of tips). PAC treatment led to an increase in ion levels in the leaf tissue, while mycorrhizal inoculation induced lower K and higher P contents in the roots. Leaf water potentials (at predawn and at midday) increased with the combined treatment. The absence of water deficit conditions meant there was no osmotic adjustment. Higher photosynthesis (Pn) values were associated with higher stomatal conductance (gs) values in the mycorrhizal plants, which influenced water uptake from the roots. However, gs decreased in the PAC-treated plants, reducing photosynthesis and, as a consequence, growth. The higher hydraulic conductivity (Lp) in the plants treated with PAC may have induced a better water energy status and good water transport. The combined treatment produced beneficial effects in the plants, improving their water and nutritional status.  相似文献   

11.
The interactive effects of vesicular-arbuscular mycorrhizal (VAM) fungi and root-knot nematode (Meloidogyne hapla) were studied on nematode-susceptible cultivars of tomato (cv. Scoresby) and white clover (cv. Huia) at four levels of applied phosphate. The relative merits of simultaneous inoculation with mycorrhizal fungi and nematodes and of inoculation with mycorrhizal fungi prior to nematode inoculation were evaluated. Mycorrhizal plants were more resistant than non-mycorrhizal plants to root-knot nematode at all phosphate levels and growth benefits were generally greater in plants preinfected with mycorrhizal fungi. Nematode numbers increased with increasing levels of applied phosphate. In mycorrhizal root systems, nematode numbers increased in the lower phosphate soils; at higher phosphate levels nematode numbers were either unaffected or reduced. The numbers of juveniles and adults per gram of root were always lower in mycorrhizal treatments. Mycorrhizal root length remained unaffected by nematode inoculation. Mycorrhizal inoculation thus increased the plants' resistance to infection by M. hapla. This was probably due to some alteration in the physiology of the root system but was not entirely a result of better host nutrition and improved phosphorus uptake by mycorrhizal plants.  相似文献   

12.
The growth of wheat seedlings which were already mycorrhizal when transplanted to a field deficient in phosphorus was improved compared with non-mycorrhizal controls, and grain yield was increased three-fold by the fungus, indicating that Endogone stimulated growth and increased yield. Differences between mycorrhizal and non-mycorrhizal wheat were eliminated by the application of phosphate fertilizer, indicating that the fungus does not enhance wheat growth in soils containing enough available phosphate. It is probable that the mycorrhizal effect is primarily to improve the supply of phosphate. There were clear relationships between spore number in the soil and mycorrhizal development and between the extent of root infection and increased growth. The extent of root infection was greatest in mycorrhizal plants in soil not supplemented with phosphate and it decreased in inoculated plants in the plot supplemented with superphosphate. The non-centrospermous and non-zygophyllaceous weeds growing on the experimental field had typical vesicular arbuscular infection and indigenous Endogone spores in their rhizospheres. The centrospermous plants were non-mycorrhizal and had no Endogone spores in their rhizospheres.  相似文献   

13.
14.
Seven banana cultivars (Musa acuminata, AAA group) were inoculated with two species of vesicular arbuscular mycorrhizal (VAM) fungi (Glomus mosseae and Glomus macrocarpum) in a greenhouse experiment. Inoculated plants had generally greater shoot dry weight and shoot phosphorus concentrations compared to the noninoculated plants. A great variation in dependency on mycorrhizal colonization was observed among the banana cultivars. Cv. Williams showed the highest relative mycorrhizal dependency (RMD) and cv. Poyo the lowest. For all the cultivars studied, inoculation with G. macrocarpum resulted in the highest RMD values. Both root dry weight and root hair length or density of the noninoculated plants were inverserly correlated with the RMD values of cultivars.  相似文献   

15.
Two pot experiments were conducted to examine three-level interactions between host plants, mycorrhizal fungi and parasitic plants. In a greenhouse experiment, Poa annua plants were grown in the presence or absence of an AM fungus (either Glomus lamellosum V43a or G. mosseae BEG29) and in the presence or absence of a root hemiparasitic plant (Odontites vulgaris). In a laboratory experiment, mycorrhizal infection (Glomus claroideum BEG31) of Trifolium pratense host plants (mycorrhizal versus non-mycorrhizal) was combined with hemiparasite infection (Rhinanthus serotinus) of the host (parasitized versus non-parasitized). Infection with the two species of Glomus had no significant effect on the growth of P. annua, while hemiparasite infection caused a significant reduction in host biomass. Mycorrhizal status of P. annua hosts (i.e. presence/absence of AM fungus) affected neither the biomass nor the number of flowers produced by the attached O. vulgaris plants. Infection with G. claroideum BEG31 greatly increased the biomass of T. pratense, but hemiparasite infection had no effect. The hemiparasitic R. serotinus plants attached to mycorrhizal hosts had higher biomass and produced more flowers than plants growing with non-mycorrhizal hosts. Roots of T. pratense were colonized by the AM fungus to an extent independent of the presence or absence of the hemiparasite. Our results confirm earlier findings that the mycorrhizal status of a host plant can affect the performance of an attached root hemiparasite. However, improvement of the performance of the parasitic plant following attachment to a mycorrhizal host depends on the extent to which the AM fungi is able to enhance the growth of the host. Accepted: 23 February 2001  相似文献   

16.
Mycorrhizal fungi, which can produce a large portion of total soil respiration, respond strongly to global changes such as elevated CO2, N-deposition, and land-use change. Predictions of future ecosystem C sequestration hinge on respiration budgets, but the mycorrhizal influence on total soil respiration remains unknown. In this study, sunflowers (Helianthus annuus) were subjected to various mycorrhizal treatments, and their root and soil systems were enclosed in chambers that continuously monitored belowground (root + mycorrhizal + heterotrophic) CO2 production during plant growth, death, and decomposition. Rhizocosms with high mycorrhizal colonization exhibited higher soil respiration rates as plants matured, an increase that was in proportion to the mycorrhizal stimulation of plant growth. Living mycorrhizal plants behaved like nonmycorrhizal ones in that total rhizocosm respiration had the same relationship to plant mass and the same temperature sensitivity as nonmycorrhizal plants. Upon removal of the shoots though, mycorrhizal plants exhibited the largest relative reduction in respiration resulting in a unique relationship of soil respiration with plant mass. The mycorrhizal influence on heterotrophic respiration merits as much attention from experimenters and modelers as the mycorrhizal contribution to autotrophic respiration.  相似文献   

17.
Mycorrhizal fungus colonization of roots may modify plant metal acquisition and tolerance. In the present study, the contribution of the extraradical mycelium of an arbuscular mycorrhizal (AM) fungus, Glomus mosseae (BEG 107), to the uptake of metal cations (Cu, Zn, Cd and Ni) by cucumber (Cucumis sativus) plants was determined. The influence of the amount of P supplied to the hyphae on the acquisition and partitioning of metal cations in the mycorrhizal plants was also investigated. Pots with three compartments were used to separate root and root-free hyphal growing zones. The shoot concentration of Cd and Ni was decreased in mycorrhizal plants compared to non-mycorrhizal plants. In contrast, shoot Zn and Cu concentrations were increased in mycorrhizal plants. High P supply to hyphae resulted in decreased root Cu concentrations and shoot Cd and Ni concentrations in mycorrhizal plants. These results confirm that some elements required for plant growth (P, Zn, Cu) are taken up by mycorrhizal hyphae and are then transported to the plants. Conversely, Cd and Ni were transported in much smaller amounts by hyphae to the plant, so that arbuscular mycorrhizal fungus colonization could partly protect plants from toxic effects of these elements. Selective uptake and transport of plant essential elements over non-essential elements by AM hyphae, increased growth of mycorrhizal plants, and metal accumulation in the root may all contribute to the successful growth of mycorrhizal plants on metal-rich substrates. These effects are stimulated when hyphae can access sufficient P in soil.  相似文献   

18.
Inoculation of finger millet (Eleusine coracana Gaertn.) plants with one of six different vesicular, arbuscular, mycorrhizal (VAM) fungi increased plant biomass, height, leaf area and absolute growth rate; however, effectiveness of the various VAM fungi varied significantly. Maximum root colonization and mycorrhizal efficacy was observed with plants inoculated with Glomus caledonicum. Among five host genotypes tested for mycorrhizal dependency against G. caledonicum, genotype HR-374 gave the highest plant biomass, mycorrhizal efficacy and root colonization, the inoculation resulting in increased mineral (phosphate, nitrogen, Zn2+ and Cu2+) content and uptake in shoots.  相似文献   

19.
Little bluestem grass Schizachyrium scoparium ([Michx.] Nash) plants were grown under field conditions for 2 years in soils fumigated with methyl bromide and chloropicrin, or in unfumigated soil, and treated with supplemental inorganic nutrients (bases calcium and magnesium) phosphorus, nitrogen, and potassium. Most differences in measured plant responses were due to interactions between fumigation and nutrient treatments. These included biomass production, root mass per unit length (μg/cm), root lengths, flowering culm production, percent colonization, colonized root length, and spore production in rhizosphere soil. Plants generally responded to mycorrhizal fungal colonization by reducing total root length and producing thicker roots. Treatment of plants with bases appeared to profoundly affect the mycorrhizal association by reducing sporulation of vesicular-arbuscular mycorrhizal fungi and increasing colonization. When fumigated or unfumigated soils were considered separately, base-treated plants produced more biomass than other treatments. Base-treated plants grown on unfumigated soil had more flowering culms and longer colonized root lengths than all other plants. Percent colonization by mycorrhizal fungi and colonized root length were positively correlated with phosphorus/nitrogen ratios, but the ratio was not correlated with plant biomass production. This suggests that phosphorus is not a limiting nutrient in our soil and investment in a mycorrhizal association may not result in enhanced plant growth. The base-nutrient effects may indicate a need to reevaluate earlier studies of macro nutrient effects that did not take into account the role played by calcium and magnesium in assessing fungus-host plant interactions.  相似文献   

20.
不同强度盐胁迫下AM真菌对羊草生长的影响   总被引:3,自引:0,他引:3  
张义飞  王平  毕琪  张忠辉  杨允菲 《生态学报》2016,36(17):5467-5476
不同浓度NaCl盐处理下,AM真菌对羊草(Leymus chinensis)的侵染能力和对植物生长的影响,从植物形态和离子含量角度探讨了AM真菌提高羊草耐盐性的作用机理。结果表明,在高盐胁迫下,AM真菌显著降低了盐胁迫效应,提高了羊草生物量,菌根效应明显。菌根化羊草的根茎比显著增加,并且N、P浓度较高,Na~+和Cl~-离子浓度较低,表明AM真菌即促进羊草对营养元素的吸收,又减少了离子毒害。菌根化羊草的Ca~(2+)和K~+离子浓度,以及P/Na~+和K~+/Na~+比高于非菌根化羊草,表明AM真菌可通过调节渗透势以避免或减缓盐胁迫造成的生理缺水。随着盐胁迫的增加,菌根化羊草对磷的依赖性逐渐转换为对钾的依赖性。研究结果有助于揭示AM真菌提高植物耐盐能力的作用机理,并对应用菌根技术修复盐化草地具有理论指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号