首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
Nutrient acquisition and growth of citronella Java (Cymbopogon winterianus Jowitt) was studied in a P-deficient sandy soil to determine the effects of mycorrhizal symbiosis and soil compaction. A pasteurized sandy loam soil was inoculated either with rhizosphere microorganisms excluding VAM fungi (non-mycorrhizal) or with the VAM fungus, Glomus intraradices Schenck and Smith (mycorrhizal) and supplied with 0, 50 or 100 mg P kg-1 soil. The soil was compacted to a bulk density of 1.2 and 1.4 Mg m-3 (dry soil basis). G. intraradices substantially increased root and shoot biomass, root length, nutrient (P, Zn and Cu) uptake per unit root length and nutrient concentrations in the plant, compared to inoculation with rhizosphere microorganisms when the soil was at the low bulk density and not amended with P. Little or no plant response to the VAM fungus was observed when the soil was supplied with 50 or 100 mg P kg-1 soil and/or compacted to the highest bulk density. At higher soil compaction and P supply the VAM fungus significantly reduced root length. Non-mycorrhizal plants at higher soil compaction produced relatively thinner roots and had higher concentrations and uptake of P, Zn and Cu than at lower soil compaction, particularly under conditions of P deficiency. The quality of citronella Java oil measured in terms citronellal and d-citronellol concentration did not vary appreciably due to various soil treatments.  相似文献   

2.
The effects of three soil temperatures on growth of spring barleys (Hordeum vulgare L.) and on their root colonization by vesicular arbuscular mycorrhizal (VAM) fungi from agricultural soils in Montana (USA) or Syria at different inoculum concentrations were tested in soil incubators in the greenhouse. The number of mycorrhizal plants as well as the proportion and intensity of roots colonized increased with higher soil temperatures. VAM fungi from Montana, primarily Glomus macrocarpum, were cold tolerant at 11°C while those from Syria, primarily G. hoi, were heat tolerant at 26°C. Inoculum potential of Montana VAM fungi was higher than Syrian VAM fungi in cool soils. Harmal, selected from Syrian barley land races, had the highest colonization by mycorrhizal fungi of the cultivars tested.Journal Series Paper: J-2532 Montana Agricultural Experiment Station.  相似文献   

3.
The inoculation of Pistacia terebinthus with vesicular-arbuscular mycorrhizal (VAM) fungi and the spread of the infection were studied using a mixed cropping system, under glasshouse conditions, with Salvia officinalis, Lavandula officinalis and Thymus vulgaris colonized by Glomus mosseae as an inoculation method. This method was compared with soil inoculum placed under the seed or distributed evenly in the soil. Indirect inoculation with all the aromatic plants tested significantly increased VAM root colonization of P. terebinthus compared with the use of soil inoculum, although the effect on plant growth was different for each one of the aromatic species used as inoculum source. Inoculation with L. officinalis and T. vulgaris were the best treatments resulting in high VAM colonization and growth enhancement of P. terebinthus.  相似文献   

4.
Tang  C.  Robson  A. D. 《Plant and Soil》2000,225(1-2):11-20
The application of herbicides has induced symptoms of nutrient deficiencies under some circumstances. This glasshouse study examined the effect of chlorsulfuron on the uptake and utilization of copper (Cu) in four cultivars of wheat plants (Triticum aestivum L. cvs. Kulin, Cranbrook, Gamenya and Bodallin) on a Cu-responsive soil. Application of chlorsulfuron depressed the concentration of Cu in wheat plants receiving either inadequate or adequate Cu. In plants with inadequate Cu supply, chlorsulfuron increased the severity of Cu deficiency. Shoot weight was markedly decreased by chlorsulfuron at all levels of Cu, through decreasing the number of tillers and the elongation of leaves. This decreased growth of shoots occurred prior to the effect on Cu concentration in tissues. The retranslocation of Cu in old tissues over time was unaffected by chlorsulfuron. In all wheat cultivars, the decreased growth of shoots were correlated with the concentration of Cu in the youngest fully emerged leaf blade with critical levels of 1.6−1.7 at day 25 and 0.9−1.0 μg g−1 d. wt. at day 60. The application of chlorsulfuron tended to increase the critical level at day 25 but not at day 60. In addition, Kulin seems to be most, and Cranbrook least, sensitive to chlorsulfuron. This sensitivity was associated with the sensitivity of the cultivars to Cu deficiency. It is suggested that chlorsulfuron application induces Cu deficiency in wheat plants mainly due to effects on the uptake of Cu. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
In two pot-culture experiments with maize in a silty loam (P2 soil) contaminated by atmospheric deposition from a metal smelter, root colonization with indigenous or introduced arbuscular mycorrhizal (AM) fungi and their influence on plant metal uptake (Cd, Zn, Cu, Pb, Mn) were investigated. Soil was -irradiated for the nonmycorrhizal control. In experiment 1, nonirradiated soil provided the mycorrhizal treatment, whereas in experiment 2 the irradiated soil was inoculated with spores of a fungal culture from P2 soil or a laboratory reference culture, Glomus mosseae. Light intensity was considerably higher in experiment 2 and resulted in a fourfold higher shoot and tenfold higher root biomass. Under the conditions of experiment 1, biomass was significantly higher and Cd, Cu, Zn and Mn concentrations significantly lower in the mycorrhizal plants than in the nonmycorrhizal plants, suggesting a protection against metal toxicity. In contrast, in experiment 2, biomass did not differ between treatments and only Cu root concentration was decreased with G. mosseae-inoculated plants, whereas Cu shoot concentration was significantly increased with the indigenous P2 fungal culture. The latter achieved a significantly higher root colonization than G. mosseae (31.7 and 19.1%, respectively) suggesting its higher metal tolerance. Zn shoot concentration was higher in both mycorrhizal treatments and Pb concentrations, particularly in the roots, also tended to increase with mycorrhizal colonization. Cd concentrations were not altered between treatments. Cu and Zn, but not Pb and Cd root-shoot translocation increased with mycorrhizal colonization. The results show that the influence of AM on plant metal uptake depends on plant growth conditions, on the fungal partner and on the metal, and cannot be generalized. It is suggested that metal-tolerant mycorrhizal inoculants might be considered for soil reclamation, since under adverse conditions AM may be more important for plant metal resistance. Under the optimized conditions of normal agricultural practice, however, AM colonization even may increase plant metal absorption from polluted soils.  相似文献   

6.
Summary Drought resistance of wheat (Triticum aestivum L.) as influenced by two vesiculararbuscular mycorrhizal (VAM) fungi,Glomus fasciculatum 10 andGlomus deserticola 19, was evaluated. Soil columns 0.15 m diam. by 1.20 m length were used to reduce the influence of limited rooting space. With initial soil water at 0.5 MPa (0.145 kg kg–1), plants were subjected to low-level water stress throughout the experiment and severe water stress for 24 h at one (55 days after transplanting, Feekes scale 10.1) two (55 and 63 days, Feekes 10.1 and 10.2), or three (55, 63, and 70 days, Feekes 10.1, 10.1, and 10.2) periods. After each stress period, one set of plants was watered and grown to maturity without subsequent water stress. A second set of plants was harvested 1 week after stress.G. fasciculatum-inoculated plants harvested 7 days after stress at 55 days had greater leaf area and leaf, total plant, and root weight than non-VAM plants.G. deserticola-inoculated plants had greater leaf area and leaf weight than non-VAM plants. After stress at 55 and 63 days, leaf area, and leaf and total dry weight were again greater for VAM than for non-VAM plants. However, after stress at 55, 63, and 70 days, differences in aboveground biomass between VAM and non-VAM plants were not significant at P=0.05. Aboveground biomass was not affected by VAM species in plants stressed at 55 or 55 and 63 days, butG. fasciculatum-inoculated plants produced more tillers atter stress at 55 days. When grown to maturity, VAM plants which had undergone three stress periods had twice the biomass and grain yield as non-VAM plants subjected to the same stress. The three stress periods reduced number of heads and kernel numbers of weight of non-VAM plants compared to VAM plants.G. fasciculatum-inoculated plants consistently had increased root weight and rooting depth.Contribution from the Agricultural Research Service, USDA, in cooperation with the Nebr. Agric. Exp. Stn., Univ. Nebr.-Lincoln, Lincoln, Nebr. Published as Paper No. 7571 Journal Series, Nebr. Agric. Exp. Stn.  相似文献   

7.
Michelsen  A.  Rosendahl  S. 《Plant and Soil》1990,124(1):7-13
The effect of vesicular-arbuscular mycorrhizal (VAM) fungi on growth and drought resistance of Acacia nilotica and Leucaena leucocephala seedlings was studied in a glasshouse experiment. The experimental design was a 2·2·2 factorial: ± mycorrhizal inoculation, ± application of phosphorus fertilizer and ± repeated drought treatment. The growth promoting effect of VAM fungi equalled the effect of phosphorus fertilization after 12 weeks. The drought treatment reduced seedling biomass and nodulation. Differences between the plant species were found with respect to growth improvements due to VAM inoculation and/or phosphorus fertilization under drought stress conditions. The results are discussed in relation to plant drought resistance and reforestation in the subhumid to arid tropics.  相似文献   

8.
The effect of 3 different species of vesicular-arbuscular mycorrhizal fungi on the growth of Stylosanthes guianensis (Aubl.) Sw. cultivated in a sterilized acid and dystrophic soil (Quartzipsament), with 4 levels of lime (0; 0.27; 0.63 and 1.10 meq Ca2+/100 g air-dried soil, as Ca(OH)2) and 2 P levels (0 and 20 mg P/kg soil, as KH2PO4) was evaluated under greenhouse conditions. Plants were harvested 40, 60, and 80 days after planting. Stylosanthes guianensis was highly mycotrophic, especially in soil without P fertilization. Mycotrophism was highest in plants inoculated with Acaulospora scrobiculata in soil receiving no P fertilizer and with 0.63 meq Ca2+/100 g air-dried soil. Shoot growth increment was as high as 5129% at the third harvest. Inoculation with Glomus macrocarpum presented intermediate results, whereas inoculation with Gigaspora margarita had no significant effect on plant growth. Root per cent colonization and shoot dry weight, as well as root percent colonization and shoot to root ratio were significantly correlated. The occurrence of S. guianensis in very acid and dystropic soils, containing toxic levels of Al3+, requires the association with VAM fungi for the plant tolerate such conditions.  相似文献   

9.
Summary The effects of vesicular-arbuscular mycorrhiza (VAM) on the growth and phosphorus uptake of cocoa seedlings (Theobroma cacao L.) grown for 100 days in polythene bags, were studied at five levels of phosphorus fertilization in both steamed and unsterile Bungor Series soil (a fine clayey, kaolinitic isohyperthermic Typic Paleudult). The cocoa seedlings responded well to phosphorus fertilization and mycorrhizal treatments. Plants inoculated with VAM fungi (Gigaspora spp.) gave the most vigorous growth and higher phosphorus in the leaf tissues in unsterile soil compared to plants grown in steamed soil. However, the mycorrhizal effect was significantly more pronounced (P<0.01) in plants grown in steamed than in unsterile soil. High levels of phosphorus application depressed mycorrhizal development. Phosphorus fertilizer applied at the rates of 250 and 500 ug g−1 soil gave maximum root colonization and spore counts in both soil types used.  相似文献   

10.
The growth response of Hevea brasiliensis to vesicular-arbuscular mycorrhizal (VAM) fungi inoculation was assessed in two field nursery sites containing indigenous mycorrhizal fungi (IMF). Seedling rootstocks were inoculated with mixed VAM-fungal species in a factorial combination with phosphorus (P) fertilizer application, and planted in randomised blocks on sandy (site 1) and clayey (site 2) soils. Plants were harvested after 26 weeks for measurements of shoot dry weight (DW), stem diameter, height, mycorrhizal root colonization and leaf nutrient contents. At site 1, VAM increased shoot DW, stem diameter and plant height only in treatments without P applied. Increases in shoot DW due to VAM were 70% greater than the uninoculated controls although this was reduced to 5% when P was applied. At site 2, VAM inoculation also increased shoot DW and stem diameter but the magnitude of the increases was smaller. Shoot DW response due to VAM was only 29%. At this second site, applying phosphate to uninoculated plants did not increase shoot yields further. Leaf concentrations of all nutrients were unaffected by VAM at both sites, except for copper (Cu) which was increased by VAM in treatments where P was not applied. However, leaf contents of P, potassium (K), magnesium (Mg) and Cu were increased by VAM at site 1, and of leaf nitrogen (N) and K at site 2. These experiments demonstrate that VAM-fungi could be introduced into field nursery sites to improve growth and P uptake by H. brasiliensis. The relevance of VAM-fungi to H. brasiliensis seedling rootstock development and the influence of IMF in determining field responses is discussed.  相似文献   

11.
In a pot experiment, wheat was grown for 50 days in two heat-sterilized low-phosphorus (P) soils supplied with organic P as Na-phytate. Seed inoculation with the phosphatase-producing fungus (PPF) Aspergillus fumigatus or soil inoculation with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae increased shoot and root dry weight and root length, phosphatase activity in the rhizosphere and shoot concentrations of P and to a lesser extent of K and Mg. As a rule, the greatest effects on those parameters were most in the combined inoculation treatment (PPF + VAM). Shoot concentrations of Cu and Zn were only enhanced by VAM, not by PPF. At harvest, depletion of organic P in the rhizosphere soil increased in the order of: sterilized soil < PPF < VAM < PPF + VAM which corresponded with the enhanced P concentrations in the plants. The results demonstrate that organic P in form of Na-Phytate is efficiently used by VAM and that use of organic P can be increased by simultaneous inoculation with phosphatase-producing fungi.  相似文献   

12.
Chenopods are generally regarded as non-host plants for mycorrhizal fungi and are believed not to benefit from colonization by mycorrhizal fungi. Perennial Atriplex nummularia Lindl., growing under field conditions, showed a relatively high level of colonization by mycorrhizal fungi (10–30% of root length colonized) in spring and summer. Accordingly, two glasshouse experiments were designed to assess the effects of inoculation with mycorrhizal fungi (with a single species or a mixture of different species) on growth, nutrient uptake, and rhizosphere bacterial community composition of A. nummularia at high and low salinity levels (2.2 and 12 dSm–1). Only low and patchy colonization by mycorrhizal fungi (1–2 of root length colonized) was detected in inoculated plants under glasshouse conditions which was unaffected by salinity. Despite the low colonization, inoculation increased plant growth and affected nutrient uptake at both salinity levels. The effects were higher at an early stage of plant development (6weeks) than at a later stage (9–10 weeks). Salinity affected the bacterial community composition in the rhizosphere as examined by ribosomal intergenic spacer amplification (RISA) of 16S rDNA, digitization of the band patterns and multivariate analysis. The effects of inoculation with mycorrhizal fungi on growth of A. nummularia may be attributed to (i) direct effects of mycorrhizal fungi on plant nutrient uptake and/or (ii) indirect effects via mycorrhizal-induced changes in the bacterial community composition.  相似文献   

13.
In a greenhouse experiment involving an acid soil teff [Eragrostis tef (Zucc.) Trotter] plants failed to grow unless the soil was limed or inoculated with either of two vesicular-arbuscular-mycorrhizal (VAM) fungi,Glomus mosseae orGlomus macrocarpum. Plant growth increased by liming and to a lesser extent by VAM fungal inoculation. Liming also enhanced root colonization by VAM fungi. Shoot micronutrient content generally increased as a result of inoculation, and decreased by increased lime applications.  相似文献   

14.
A factorial design 23 × 4 with two levels of Mussorie rockphosphate (RP) with or without vesicular-arbuscular mycorrhizal (VAM) fungi and Bradyrhizobium japonicum, and four treatments of phosphate-solubilizing microbes (PSM) Pseudomonas striata, Bacillus polymyxa, Aspergillus awamori was employed using Patharchatta sandy loam soil (Typic Hapludoll). The observations included mycorrhization, nodulation, grain and straw yield, N and P uptake, available soil P and the PSM population in the soil after crop harvest. Inoculation with endophytes alone caused about 70% root colonization. Addition of rockphosphate or inoculation with PSM, except B. polymyxa, stimulated root infection of native as well as introduced VAM endophytes. Application of RP or inoculation with Bradyrhizobium japonicum, mycorrhizal fungi or phosphate-solubilizing microorganisms significantly increased nodulation, N uptake, available soil P and the PSM population in the soil after the crop harvest. The grain and straw yields did not increase following RP addition or mycorrhizal inoculation but increased significantly after inoculation wit Bradyrhizobium or PSM. In general, the application of RP, Bradyrhizobium, VAM and PSM in combinations of any two or three resulted in significant increases in nodulation, plant growth, grain yield and uptake of N and P. Among the four factor interactions, rockphosphate, Bradyrhizobium and P. striata in the absence of VAM resulted in maximal nodulation, grain and straw yields and N uptake by soybean. The highest P uptake by soybean grain was recorded with Bradyrhizobium and A. awamori in the absence of rockphosphate and VAM. Generally, available soil P and PSM population after crop harvest were not significantly increased by the treatment combinations giving the maximal uptake of nutrients. However, they increased significantly in response to PSM, which produced no significant increase in total uptake of nutrients.Research paper no. 7498  相似文献   

15.
P. A. McGee 《Plant and Soil》1987,101(2):227-233
Addition of MnSO4 or MnCl2 to a fine sandy soil from South Australia had a negative effect on shoot growth and root elongation ofSolanum opacum in the absence of significant presence of vesicular-arbuscular mycorrhiza (VAM). VAM ameliorated the reduction of plant growth by Mn, even though mycorrhizal development was decreased. Mn inhibited infection of roots by a fine endophyte less than that by some coarse endophytes. High concentrations of available Mn inhibited growth of hyphae of VAM fungi from dried root pieces, a significant source of infection by mycorrhizal fungi in the soil used.  相似文献   

16.
The growth and mineral nutrition responses were evaluated of three tropical legumes, cowpea (Vigna unguiculata L. cv Kuromame), pigeonpea [Cajanus cajan L. (Millsp.) cv ICPL 86009] and groundnut (Arachis hypogaea cv Nakateyutaka) inoculated with two different species of VAM fungi, Glomus sp. (Glomus etunicatum-like species) and Gigaspora margarita, and grown in Andosols with different fertilities [Bray II-P: topsoil (72 ppm), subsoil (<0.1 ppm)]. Percent fungal root colonization was high in cowpea and groundnut but relatively low in pigeonpea in both soil types. Despite the low rate of root infection, significant growth responses were produced, especially in the inoculated pigeonpea plant. In all legumes, shoot dry matter production was favoured by the inoculations. Increases in shoot biomass due to mycorrhizae were greater in the subsoil than in the topsoil. Mycorrhization raised shoot concentrations of P and Ca (in cowpea and groundnut) and P and K (in pigeonpea) in the topsoil. Whereas the P concentration in shoots in the subsoil was not positively affected by VAM fungi, particularly in cowpea and pigeonpea, the concentration of K in such plants was significantly increased by VAM treatment. The results also showed that mycorrhizal enhancement of shoot micronutrient concentrations was very rare in all plants, with negative effects observed in certain cases. Cu concentration, in particular, was not affected by VAM formation in any of the plants, and Mn and Fe in pigeonpea and groundnut, respectively, remained the same whether plants were mycorrhizal or not. In both soils the three legumes responded to Glomus sp. better than to Gigaspora margarita, and the effects of the VAM fungi on each of the crops relative to the controls were greater in the subsoil than in the topsoil. However, shoot growth of groundnut was not affected as much as cowpea and pigeonpea by the type of soil used. In spite of the relatively low infection of its root, pigeonpea was generally the most responsive of the three legume species in terms of mycorrhizal/nonmycorrhizal ratios.  相似文献   

17.
Two arbuscular mycorrhizal fungi (Glomus deserticola and Glomus fasciculatum) were entrapped in calcium alginate, alone or in combination with a phosphate-solubilizing yeast (Yarowia lipolytica) and, after storage for 60 days, were inoculated into soil microcosms with tomato as the test plant. The average extent of root colonization by gel-entrapped G. deserticola and G. fasciculatum were 32 ± 5.6 and 24 ± 12.1%, respectively. Improved infective potential and colonization efficiency were observed when Y. lipolytica was co-entrapped with the mycorrhizal fungi. The best value, 49%, of mycorrhizal colonization was in roots of plants inoculated with G. deserticola co-entrapped with Y. lipolytica.  相似文献   

18.
Cabbage (Brassica oleracea, var. capitata, cv. Hercules) seedlings were inoculated with vesicular-arbuscular mycorrhizal (VAM) fungi Glomus fasciculatum, G. aggregatum, and G. mosseae. Differential efficiency in mycorrhizal colonization and the specificity of fungal symbiont to stimulate the growth and nutrient uptake of the host were observed. In addition, there was an increase in phenol, protein, reducing sugar contents, and peroxidase activity in the VAM inoculated seedlings. Since these compounds are known to confer resistance against fungal pathogens, the use of VAM as a biological control agent to protect cabbage against several root diseases is suggested.  相似文献   

19.
Seven banana cultivars (Musa acuminata, AAA group) were inoculated with two species of vesicular arbuscular mycorrhizal (VAM) fungi (Glomus mosseae and Glomus macrocarpum) in a greenhouse experiment. Inoculated plants had generally greater shoot dry weight and shoot phosphorus concentrations compared to the noninoculated plants. A great variation in dependency on mycorrhizal colonization was observed among the banana cultivars. Cv. Williams showed the highest relative mycorrhizal dependency (RMD) and cv. Poyo the lowest. For all the cultivars studied, inoculation with G. macrocarpum resulted in the highest RMD values. Both root dry weight and root hair length or density of the noninoculated plants were inverserly correlated with the RMD values of cultivars.  相似文献   

20.
The effects of Pratylenchus vulnus and the endomycorrhizal fungus Glomus mosseae on growth of Myrobalan 605, Marianna 2624 and San Julian 655-2 plum rootstocks were measured under shadehouse conditions in the field for two growing seasons (1990–91). Shoot dry weights were higher in the majority of the vesicular-arbuscular mycorrhizal (VAM) alone inoculated plants after both growing seasons. Root weights of mycorrhizal Myrobalan and Marianna were higher than root weights of the same rootstocks lacking mycorrhizae, inoculated with P. vulnus, and VAM in combination with the nematode. Mycorrhizal Marianna inoculated with the nematode showed a considerably higher final nematode population in relation to non-inoculated VAM treatments. No correlation was found in the number of nematodes per gram of root between mycorrhizal and non-mycorrhizal treatments. P. vulnus adversely affected the mycorrhizal colonization in Marianna, but not in Myrobalan and San Julian. Marianna appears to be more mycorrhizal dependent than the two other rootstocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号