首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
暖温带落叶阔叶林碳循环的初步估算   总被引:41,自引:1,他引:40       下载免费PDF全文
 森林生态系统碳循环过程与大气中二氧化碳含量有密切的关系,直接影响着大气成分的组成,进而对全球气候变化有重要影响。以我国暖温带落叶阔叶林生态系统近10年的定位研究为基础,初步建立了该类生态系统碳循环数值模式。结果表明:暖温带落叶阔叶林典型生态系统每年从外界主要是大气中吸收的碳是10.3 t·hm-2·a-1,植物呼吸释放到大气中的碳通量为5.5 t·hm-2·a-1。森林植物干物质积存的碳量为4.8 t·hm-2·a-1,通过凋落物分解释放到大气中的碳通量为2.46 t·hm-2·a-1。森林同化的碳绝大部分以活生物呼吸和凋落物分解的形式释放到大气中去了,存留在活生物体和凋落物中的很少。通过对碳现存量的研究发现,所研究的森林生态系统碳现存量为165.05 t·hm-2,其中活生物体碳现存量为61.2 t·hm-2,死生物体碳现存量为104.05 t·hm-2 (包括土壤中碳),土壤碳现存量为96 t·hm-2。土壤碳储量占总碳储量的58%,土壤是该地区森林生态系统主要的碳库,森林生态系统土壤中碳储量的变化必然引起整个区域碳储量整体动态的变化。  相似文献   

2.
草毡寒冻雏形土CO2释放特征   总被引:13,自引:0,他引:13  
研究了植物生长季节海北高寒草甸生态系统高寒嵩草草甸覆被下草毡寒冻雏形土的 CO2 释放速率。其结果表明 :CO2 释放速率有明显的日变化和季节动态。日最大排放速率多出现在 1 4 :0 0~ 1 6:0 0时 ,最小排放速率在 6:0 0~ 8:0 0时。植物生长季日最大振幅为 797.75mg/m2·h,最小振幅 1 97.33mg/m2·h。CO2 排放白天大于夜晚。不同物候期 CO2 释放速率不同 ,其顺序为草盛期 >枯黄期 >返青期。生长季土壤 CO2 释放速率的范围是 4 41 .72 mg/m2 · h± 1 55.2 9mg/m2· h,最大日均值为 681 .0 6mg/m2 · h( 7月 1 6日 ) ,最低值 1 76.65mg/m2 · h ( 6月 1日 )。退化草地土壤 CO2 释放速率明显低于未退化草地 ,生长季平均日均值低 1 37.4 7mg/m2·h。相关分析表明 :土壤 CO2 排放速率与气温、地表温度、土壤5cm、1 0 cm、1 5cm、2 0 cm、30 cm地温均呈显著和极显著相关关系。温度是影响土壤 CO2 释放速率的主要因子。  相似文献   

3.
基于HNSOTER的海南岛土壤有机碳储量及空间分布特征分析   总被引:6,自引:0,他引:6  
基于海南岛1∶200 000土壤 地体数字化数据库(HNSOTER),在GIS系统的支持下,对海南岛土壤有机碳储量及分布特征进行了探讨.结果表明,1)标准剖深下(0~100 cm),海南岛土壤有机碳储量为2.78×108 t.2)0~20 cm剖深土壤有机碳密度变幅在0.3~18.8 kg·m-2之间,其中1.0~5.0 kg·m-2密度区占总分布面积的81.2%,按面积加权均值为3.3 kg·m-2.0~100 cm剖深的土壤有机碳密度变幅在1.0~32.1 kg·m-2 之间,其中2.0~14.0 kg·m-2密度区面积比重占89.7%,按面积加权均值为8.4 kg·m-2.不同地形、岩性及土壤类型中,土壤有机碳密度分布有较大变异.3)从中部山地向外至沿海平原,土壤有机碳密度总体上呈递减趋势,但不同剖深下其分布格局仍有一定差异.0~20 cm剖深下土壤有机碳密度高值区(丰富度指数大于1)主要分布于山地以及北部玄武岩台地,0~100 cm剖深下,有机碳密度高值区(丰富度指数大于1)趋向集中于中东部山地、台地区,且其分布重心较前者明显的向东偏移.  相似文献   

4.
为明确外源有机物质和无机碳酸盐对桂西北石灰土土壤有机碳矿化的影响,加深对土壤有机碳周转特征的认识,本文以广西环江县喀斯特地区的棕色石灰土、黑色石灰土和地带性红壤(对照)为研究对象,进行为期100 d的室内培养试验[对照(无外源物添加,CK)、添加14C-稻草(S)、添加Ca14CO3(C)],并对土壤呼吸释放的CO2及14C-CO2含量进行测定.结果表明:培养100 d后,外源物的添加均明显促进了红壤、棕色和黑色石灰土有机碳的矿化,外源14C-稻草和Ca14 CO3对上述土壤有机碳矿化的激发效应分别为28.7%、46.2% 、15.5%和127.0% 、175.3%、100.1%;土壤表观累积矿化量中外源Ca14CO3的贡献率分别为40.4%、48.4%、19.6%;土壤类型和添加物及两者间的交互作用均对土壤有机碳矿化的激发效应、土壤表观累积矿化量中外源物的贡献、土壤有机碳的矿化速率、土壤有机碳累积矿化量/率有显著影响.因此,外源有机物质和碳酸钙的添加改变了土壤有机碳的矿化特征,对于含碳酸盐的石灰土,研究土壤有机碳矿化、周转规律,评估其对大气CO2的影响必须考虑无机碳酸盐的贡献.  相似文献   

5.
海南岛尖峰岭热带山地雨林土壤和凋落物呼吸研究   总被引:24,自引:0,他引:24  
采用 CI-30 1 PS红外 CO2 测定系统对海南岛尖峰岭热带山地雨林土壤和凋落物的呼吸进行测定结果表明 ,原始林土壤呼吸速率昼夜变化表现为多峰曲线 ,最高峰在 2 0 :0 0 ,在 1 2 :0 0和 4 :0 0~ 6 :0 0出现 2个次高峰 ,平均呼吸速率为1 0 .6 85 3μmol· m- 2· s- 1;更新林土壤呼吸速率变化大 ,平均为 1 4 .75 36 μmol· m- 2· s- 1,高峰主要在 1 3:0 0和 2 :0 0 ;凋落物分解过程在林地 CO2 排放总量中贡献很少 ,仅占 1 .74 1 %~ 2 .831 % ;原始林凋落物 CO2 排放量明显比更新林大 ,而各层的排放比例不一样 ,原始林是 b层 (半分解凋落物及腐殖质层 ) >a层 (未分解凋落物层 ) ,更新林是 b层相似文献   

6.
不同培养温度下长期施肥水稻土的有机碳矿化特征   总被引:6,自引:0,他引:6  
选择湖南省3个国家级稻田肥力变化长期定位监测点的土壤,分别在10、20和30℃进行室内恒温培养试验,研究温度和施肥对土壤有机碳矿化的影响及其与不同碳形态含量的关系.结果表明:在培养前期(0~13 d)土壤CO2产生速率较快,后期逐渐下降,其速率变化符合对数函数;升温促进了土壤有机碳矿化,各施肥处理土壤中,以秸秆还田和化肥配施有机肥处理土壤有机碳的累积矿化量较多;各施肥土壤的Q10值为1.01~1.53,与总有机碳、易氧化有机碳、胡敏酸碳和富里酸碳呈显著正相关;在10和20℃下CO2矿化量与微生物生物量呈显著的线性相关关系,而30℃下则无显著相关关系;CO2矿化量与不同碳形态含量和胡敏酸碳/富里酸碳呈显著的线性正相关;在10℃下矿化率与不同碳形态含量呈显著的线性负相关,在20和30℃下,矿化率与不同碳形态含量无明显相关关系.因此可以通过施用秸秆和有机肥增加对土壤碳的固定,减缓大气CO2浓度的升高,减少温室气体排放.  相似文献   

7.
对高寒矮嵩草草甸生态系统中大气 -土壤 -植被 -动物分室碳素储量及碳素循环进行了研究 ,结果表明 ,草毡寒冻雏形土土壤库 0~ 30 cm碳素储量为 2 4 7.30 t C/ hm2 。土壤 CO2 平均释放速率 70 .94± 54.76kg/ (hm2· d) ,年释放量为 6.630 t C/ (hm2·a) ,比退化草地 4.62 0 t C/ (hm2·a)释放量高。植物包括根系总固碳量为 4.648t C/ (hm2· a) ,动物亚系统中 ,藏系绵羊个体同化的碳素为 7.562 kg C/ (hm2· a) (成年羊 ) ,作为畜产品迁出生态系统。生态系统初级生产固碳量占每年土壤 CO2 释放量的 70 .1 6% ,占生长季土壤 CO2 释放量的 96.43% ,退化草地土壤 CO2 释放量比初级生产固碳量要低。认为高寒矮嵩草草甸生态系统土壤是大气温室气体 CO2 的小的排放源。  相似文献   

8.
森林生态系统土壤CO2释放随海拔梯度的变化及其影响因子   总被引:2,自引:0,他引:2  
联合国气候框架公约的签署提升了人们对全球变暖、碳循环的关注。土壤CO2释放作为土壤-大气CO2交换的主要途径之一,成为了各国生态学家研究的重点内容。通过对1800~2155m海拔梯度上森林生态系统土壤CO2释放进行研究,揭示了较小空间尺度上土壤CO2释放的变化规律及其控制机制。在研究区域内,随着海拔梯度的增加,森林土壤CO2释放由(1.94±0.06)μmolm-2s-1逐渐增加至(2.22±0.07)μmolm-2s-1。土壤温度、土壤水分、土壤有机碳(SOC)、全N、全P与土壤CO2释放呈显著正相关(n=14,P<0.05);土壤容重与土壤CO2释放速率呈显著负相关(n=14,P<0.05);土壤pH对土壤CO2释放影响不显著。作为一个复杂的生态学过程,环境因子及其交互作用对土壤CO2释放产生影响,为了减少因子共线性影响,逐步降低因子维数,采用主成分分析(PCA)揭示了土壤温度、土壤水分、SOC、全N、全P、容重6个因子的联合作用,其累积贡献率达到了57%以上;进一步运用逐步回归分析方法,探讨了影响土壤CO2释放沿海拔梯度分布的主导因子,结果表明土壤水分是研究区域森林生态系统土壤CO2释放沿海拔梯度变化的主导因子。  相似文献   

9.
湿地土壤有机碳研究是全球碳循环研究的基础性工作, 对于准确评估湿地固碳增汇和全球温室气体减排都具有重要意义。以鄱阳湖国家自然保护区为研究区域, 选择六种景观类型(湿地洲滩景观包括受人工控制的碟形湖泊常湖池、半人工控制的碟形湖泊蚌湖、不受人工控制的洲滩前缘泗洲头以及岗地景观包括林地、田地和菜地), 湿地洲滩景观在各1 m高程(泗洲头和蚌湖采样高程10-17 m, 常湖池采样高程12-17 m)内的浅土壤采取3个土壤样品, 岗地景观浅层土壤各采取3个土壤样品, 分析浅层土壤有机碳含量。结果表明, 鄱阳湖不同景观类型的浅层土壤有机碳含量差异性显著。湿地洲滩浅层土壤(特别是0-10 cm土层)的有机碳随高程梯度变化呈现倒U型变化, 即低海拔与高海拔土壤有机碳的含量较中海拔土壤有机碳的含量低, 泗洲头洲滩土层0-10 cm的有机碳含量最高值出现在13-14 m高程, 其中0-10 cm土层的土壤有机碳含量变化值为1.56-12.29 g·kg-1, 10-20 cm土层的土壤有机碳含量变化值为0.96-8.19 g·kg-1; 蚌湖洲滩土层0-10 cm的有机碳含量最高值出现在14-15 m高程, 其中0-10 cm土层的土壤有机碳含量变化值为6.36-23.32 g·kg-1, 10-20 cm土层的土壤有机碳含量变化值为4.14-8.88 g·kg-1; 常湖池洲滩土层0-10 cm的有机碳含量最高值出现在16-17 m高程, 其中0-10 cm土层的土壤有机碳含量变化值为6.51-18.91 g·kg-1, 10-20 cm土层的土壤有机碳含量变化值为3.83-10.05 g·kg-1。岗地浅层土壤有机碳(特别是0-10 cm土层)田地的土壤有机碳含量最高, 菜地土壤有机碳含量最低。比较六种景观类型的浅层土壤有机碳含量, 泗洲头洲滩浅层土壤有机碳含量最低, 蚌湖洲滩浅层土壤有机碳含量最高。六种景观类型的浅层土壤有机碳含量呈现一致的现象是土层0-10 cm的机碳含量明显高于土层10-20 cm的有机碳含量, 说明鄱阳湖国家自然保护区内土壤有机碳含量主要富集在土壤浅层的特征。土壤pH值对湿地土壤有机碳呈显著负相关性, 而土壤含水量、地上部分生物量与土壤有机碳呈显著正相关性。  相似文献   

10.
 应用土壤培养法,比较分析了六盘山林区天然次生林(杂灌林、山杨(Populus davidanda)和辽东栎(Quercus liaotungensis)林)、农田、草地和人工林(13 a、18 a和25 a华北落叶松(Larix principis-rupprechtii))土壤在30℃和60%田间饱和含水量条件下培养180 d有机碳矿化速率的差异(以180 d累计释放的CO2-C计)。结果显示:农田和草地土壤碳矿化释放的CO2-C含量(180 d释放的gCO2-C·kg-1干土)分别比天然次生林低65%和23%,差异主要在0~40土层;人工林比农田和草地分别高155%和 17%,差异主要在0~70 cm土层。农田土壤碳矿化释放的CO2-C分配比例(即180 d释放CO2-C/土壤 C)比天然次生林平均低12%,草地比天然次生林平均高18%,差异主要在0~40 cm土层;人工林比农田平均高29%,草地比人工林平均高9%,差异主要在0~50 cm土层。不同土地利用方式土壤碳矿化释放的CO2-C含量的差异比其分配比例的差异大。土壤碳矿化释放的CO2-C含量和分配比例总体上都随土层加深而递减。分配比例随土层加深而递减的幅度方面,不同土地利用方式间的差异不大;含量随土层加深而递减的幅度方面,天然次生林和人工林比农田和草地中大;随土层递减的幅度方面,土壤碳矿化释放的CO2-C含量比其分配比例大。这主要由不同土地利用方式土壤碳输入和稳定性等差异所致。结果说明土壤碳矿化速率随天然次生林变成农田或草地而下降,随在农田或草地上造林而增加, 矿化速率变化幅度比分配比例的变化幅度大。另外,土地利用变化也使不同土层土壤碳矿化速率和分配比例差异改变,其中速率改变的幅度比分配比例改变的幅度大。  相似文献   

11.
Biofuel crops may help achieve the goals of energy‐efficient renewable ethanol production and greenhouse gas (GHG) mitigation through carbon (C) storage. The objective of this study was to compare the aboveground biomass yields and soil organic C (SOC) stocks under four crops (no‐till corn, switchgrass, indiangrass, and willow) 7 years since establishment at three sites in Ohio to determine if high‐yielding biofuel crops are also capable of high levels of C storage. Corn grain had the highest potential ethanol yields, with an average of more than 4100 L ha?1, and ethanol yields increased if both corn grain and stover were converted to biofuel, while willow had the lowest yields. The SOC concentration in soils under biofuels was generally unaffected by crop type; at one site, soil in the top 10 cm under willow contained nearly 13 Mg C ha?1 more SOC (or 29% more) than did soils under switchgrass or corn. Crop type affected SOC content of macroaggregates in the top 10 cm of soil, where macroaggregates in soil under corn had lower C, N and C : N ratios than those under perennial grasses or trees. Overall, the results suggest that no‐till corn is capable of high ethanol yields and equivalent SOC stocks to 40 cm depth. Long‐term monitoring and measurement of SOC stocks at depth are required to determine whether this trend remains. In addition, ecological, energy, and GHG assessments should be made to estimate the C footprint of each feedstock.  相似文献   

12.
Organic carbon and aggregate stability are key features of soil quality and are important to consider when evaluating the potential of agricultural soils as carbon sinks. However, we lack a comprehensive understanding of how soil organic carbon (SOC) and aggregate stability respond to agricultural management across wide environmental gradients. Here, we assessed the impact of climatic factors, soil properties and agricultural management (including land use, crop cover, crop diversity, organic fertilization, and management intensity) on SOC and the mean weight diameter of soil aggregates, commonly used as an indicator for soil aggregate stability, across a 3000 km European gradient. Soil aggregate stability (−56%) and SOC stocks (−35%) in the topsoil (20 cm) were lower in croplands compared with neighboring grassland sites (uncropped sites with perennial vegetation and little or no external inputs). Land use and aridity were strong drivers of soil aggregation explaining 33% and 20% of the variation, respectively. SOC stocks were best explained by calcium content (20% of explained variation) followed by aridity (15%) and mean annual temperature (10%). We also found a threshold-like pattern for SOC stocks and aggregate stability in response to aridity, with lower values at sites with higher aridity. The impact of crop management on aggregate stability and SOC stocks appeared to be regulated by these thresholds, with more pronounced positive effects of crop diversity and more severe negative effects of crop management intensity in nondryland compared with dryland regions. We link the higher sensitivity of SOC stocks and aggregate stability in nondryland regions to a higher climatic potential for aggregate-mediated SOC stabilization. The presented findings are relevant for improving predictions of management effects on soil structure and C storage and highlight the need for site-specific agri-environmental policies to improve soil quality and C sequestration.  相似文献   

13.
Mechanisms of Carbon Sequestration in Soil Aggregates   总被引:12,自引:0,他引:12  
Soil and crop management practices have a profound impact on carbon (C) sequestration, but the mechanisms of interaction between soil structure and soil organic C (SOC) dynamics are not well understood. Understanding how an aggregate stores and protects SOC is essential to developing proper management practices to enhance SOC sequestration. The objectives of this article are to: (1) describe the importance of plants and soil functions on SOC sequestration, (2) review the mechanisms of SOC sequestration within aggregates under different vegetation and soil management practices, (3) explain methods of assessing distribution of SOC within aggregates, and (4) identify knowledge gaps with regards to SOC and soil structural dynamics. The quality and quantity of plant residues define the amount of organic matter and thus the SOC pool in aggregates. The nature of plant debris (C:N ratio, lignin content, and phenolic compound content) affects the rate of SOC sequestration. Mechanisms of interaction of aggregate dynamics with SOC are complex and embrace a range of spatial and temporal processes within macro- ( > 250 μ m e.c.d.) and microaggregates ( < 250 μ m e.c.d.). A relevant mechanism for SOC sequestration within aggregates is the confinement of plant debris in the core of the microaggregates. The C-rich young plant residues form and stabilize macroaggregates, whereas the old organic C is occluded in the microaggregates. Interactions of clay minerals with C rich humic compounds in correlation with clay mineralogy determine the protection and storage of SOC. Principal techniques used to assess the C distribution in aggregates include the determination of total organic C in different aggregate size fractions, isotopic methods to assess the turnover and storage of organic C in aggregates, and computed tomography and X-ray scattering to determine the internal porosity and inter-aggregate attributes. The literature is replete with studies on soil and crop management influences on total organic C and soil aggregation. However, research reports on the interactions of SOC within aggregates for C sequestration are scanty. Questions still remain on how SOC interacts physically and chemically with aggregates, and research is needed to understand the mechanisms responsible for the dynamics of aggregate formation and stability in relation to C sequestration.  相似文献   

14.
Soil organic carbon (SOC) is essential for soil fertility and climate change mitigation, and carbon can be sequestered in soil through proper soil management, including straw return. However, results of studies of long‐term straw return on SOC are contradictory and increasing SOC stocks in upland soils is challenging. This study of North China upland agricultural fields quantified the effects of several fertilizer and straw return treatments on SOC storage changes and crop yields, considering different cropping duration periods, soil types, and cropping systems to establish the relationships of SOC sequestration rates with initial SOC stocks and annual straw C inputs. Our meta‐analysis using long‐term field experiments showed that SOC stock responses to straw return were greater than that of mineral fertilizers alone. Black soils with higher initial SOC stocks also had lower SOC stock increases than did soils with lower initial SOC stocks (fluvo‐aquic and loessial soils) following applications of nitrogen‐phosphorous‐potassium (NPK) fertilizer and NPK+S (straw). Soil C stocks under the NPK and NPK+S treatments increased in the more‐than‐20‐year duration period, while significant SOC stock increases in the NP and NP+S treatment groups were limited to the 11‐ to 20‐year period. Annual crop productivity was higher in double‐cropped wheat and maize under all fertilization treatments, including control (no fertilization), than in the single‐crop systems (wheat or maize). Also, the annual soil sequestration rates and annual straw C inputs of the treatments with straw return (NP+S and NPK+S) were significantly positively related. Moreover, initial SOC stocks and SOC sequestration rates of those treatments were highly negatively correlated. Thus, long‐term straw return integrated with mineral fertilization in upland wheat and maize croplands leads to increased crop yields and SOC stocks. However, those effects of straw return are highly dependent on fertilizer management, cropping system, soil type, duration period, and the initial SOC content.  相似文献   

15.
干旱区绿洲农田不同种植模式和秸秆管理下土壤质量评价   总被引:4,自引:0,他引:4  
研究干旱区绿洲农田不同种植模式和秸秆管理下土壤有机碳及其酶活性的变化,揭示农业管理措施对土壤质量的影响,以期为干旱区农业资源高效利用及可持续发展提供理论依据.在作物种植规划区,选择新疆主要农作物棉花、小麦、玉米,设计长期连作及轮作试验.结果表明:轮作处理土壤有机碳(SOC)、微生物生物量碳、易氧化有机碳、水溶性有机碳、热水溶性有机碳含量较连作处理分别提高了3.6%~9.9%、41.8%~98.9%、3.3%~17.0%、11.1%~32.4%、4.6%~27.5%;秸秆还田处理较秸秆不还田处理分别提高了12%~35.9%、22.4%~49.7%、30.7%~51.0%、10.6%~31.9%、41.0%~96.4%.轮作处理土壤过氧化氢酶、脱氢酶、β-葡萄糖核苷酶、蔗糖酶、纤维素酶活性较连作处理分别提高了6.4%~10.9%、6.6%~18.8%、5.9%~15.3%、10.0%~27.4%、28.1%~37.5%;秸秆还田处理较-秸秆不还田处理分别提高了31.4%~47.5%、19.9%~46.6%、13.8%~20.7%、19.8%~55.6%、54.1%~70.9%.相关性分析表明,SOC及其活性组分与土壤酶活性之间有极显著的正相关关系,利用土壤活性有机碳组分和酶活性变化可有效表征农田SOC和土壤质量变化.通过因子分析综合评价得知,在干旱区农业生产中,短期连作棉花兼实施秸秆还田可提高SOC及其活性组分含量和酶活性,合理轮作可有效缓解连作障碍,使土壤质量得到进一步改善,有利于农田土壤的可持续利用.  相似文献   

16.
农业土壤具有可观的固碳及减碳潜力,有助于减缓人类温室气体排放导致的气候变化。为了更好地了解华北平原土壤有机碳储量动态及其驱动因子,结合荟萃分析、随机森林机器学习模型和卫星遥感数据,研究了1981-2019年间中国华北平原农田土壤有机碳储量的时空变化及其驱动因子。结果表明,1981-2019年间华北平原0-20 cm农田土壤有机碳储量约为(523.10±79.36) Tg C ((14.56±1.66) Mg C/hm2),并以5.94 Tg C/a (0.12 Mg C hm-2 a-1)的年固持速率稳步增长,占比约为中国农田每年新增土壤有机碳的23.3%。其中,常规农田管理措施,包括无机肥施用、有机肥施用和秸秆还田,对土壤有机碳增长的贡献平均为25.1%,即1.49 Tg C/a (0.03 Mg C hm-2 a-1)。相比对照组,氮磷钾无机肥施用可提高22.7%-26.0%的土壤有机碳固定速率,有机肥可提高48.3%,秸秆还田可提高23.4%。同时,上述常规农田管理措施对土壤有机碳的积累作用受到土壤本身理化性质的调控,在温度和降水较高的气候条件下更显著。值得注意的是,无论是无机肥施用、有机肥施用还是秸秆还田,当投入量超过农作物和土壤微生物对碳和养分的需求时,土壤有机碳累积速率会显著下降。这也导致2000年后土壤有机碳固持速率明显减缓,由9.4 Tg C/a下降为3.5 Tg C/a。总的来说,过去几十年农田管理措施的改进显著提高了华北平原农田土壤有机碳的增加速率,而未来华北平原农田系统固碳潜力仍然可观,但亟待明确在保证粮食产量的同时不同气候和土壤环境条件下最佳固碳所需的化肥、有机肥和秸秆投入量。  相似文献   

17.
耕作方式对紫色水稻土有机碳和微生物生物量碳的影响   总被引:10,自引:2,他引:8  
以位于西南大学的农业部紫色土生态环境重点野外科学观测试验站始于1990年的长期定位试验田为对象,研究了冬水田平作(DP)、水旱轮作(SH)、垄作免耕(LM)及垄作翻耕(LF)等4种耕作方式对紫色水稻土有机碳(SOC)和微生物生物量碳(SMBC)的影响。结果表明,4种耕作方式下SOC和SMBC均呈现出在土壤剖面垂直递减趋势,翻耕栽培下其降低较均匀,而免耕栽培下其富集在表层土壤中。同一土层不同耕作方式间SOC和SMBC的差异在表层最大,随着土壤深度的增加,各处理之间的差异逐渐减小。在0—60 cm剖面中,SOC含量依次为:LM(17.6 g/kg)>DP(13.9 g/kg)>LF(12.5 g/kg)>SH(11.3 g/kg),SOC储量也依次为:LM(158.52 Mg C/hm2)>DP(106.74 Mg C/hm2)>LF(93.11 Mg C/hm2)>SH(88.59 Mg C/hm2),而SMBC含量则依次为:LM(259 mg/kg)>SH(213 mg/kg)>LF(160 mg/kg)>DP(144 mg/kg)。与其它3种耕作方式比较,LM处理显著提高SOC含量和储量以及SMBC含量。对土壤微生物商(SMBC/SOC)进行分析发现,耕作方式对SOC和SMBC的影响程度并不一致。SMBC与SOC、全氮、全磷、全硫、碱解氮、有效磷均呈现极显著正相关(P<0.01),与有效硫呈显著正相关(P<0.05);表明SMBC可以作为表征紫色水稻土土壤肥力的敏感因子。  相似文献   

18.
Annual row cropping systems converted to perennial bioenergy crops tend to accrue soil C, likely a function of increased root production and decreased frequency of tillage; however, very little is known about the mechanisms governing the accrual and stability of this additional soil C. To address this uncertainty, we assessed the formation and stability of aggregates and soil organic C (SOC) pools under switchgrass, giant miscanthus, a native perennial grass mix and continuous corn treatments in Michigan and Wisconsin soils differing in both texture and mineralogy. We isolated different aggregate size fractions, >2 mm, 0.5–2 mm, and <0.5 mm, using a procedure intended to minimize alterations to aggregate biological and chemical properties. We determined SOC, permanganate oxidizable C (POXC), and microbial activities (i.e. enzyme activities and soil respiration rates) associated with these aggregates. Soil type strongly influenced the trajectory of aggregate formation and stabilization with differences between sites in mean aggregate size, stability, SOC and microbial activity under perennial vs. corn cropping systems. At the Michigan site, soil microbial activities were highest in the >2 mm aggregates, and higher under the perennial grasses compared to corn. Contrastingly, in Wisconsin soils, microbial activities were highest in the <0.5 mm aggregates and evidence for soil C accrual under perennial grasses was observed only in a fast turnover pool in the <0.5 mm aggregate class. Our results help explain cross‐site variability in soil C accrual under perennial bioenergy crops by demonstrating how interactions between belowground productivity, soil type, aggregation processes and microbial communities influence the rates and extent of SOC stabilization. Bioenergy cropping systems have the potential to be low‐C energy sources but first we must understand the complex interactions controlling the formation and stabilization of SOC if we are to maximize soil C accrual.  相似文献   

19.
Information on changes in storage and loss of soil organic carbon (SOC) when tropical forests are converted to cropland is needed for evaluating soil structural degradation and for selecting appropriate sustainable soil management practices. We evaluated changes in SOC storage of organic carbon and acid-hydrolyzable carbohydrates content of aggregated classes and particle size fractions of adjacent forested and cultivated soils in eight agroecosystems from Ethiopian highlands and Nigerian lowlands. In all agroecosystems, SOC content was two to four times higher in the forested than the cultivated soils. Higher SOC content was found in Ethiopian (20.2–47.3 g.kg–1) than Nigerian (12.0–24.0 g.kg–1) forested soils. The magnitude of reduction in SOC and total carbohydrates with cultivation was soil-specific, being generally higher in the sandy than the clayey soils. The smaller aggregate classes (< 1.00 mm) and the sand-sized particles (2000–63 µm) of the forested soils were preferentially enriched in carbohydrates relative to larger aggregates (4.75–1.00 mm). Carbohydrates were more concentrated in the clay-size fraction of the forested than in that of the cultivated soils. Cultivation reduced aggregate stability, increased the proportions of the smaller size aggregates and their associated carbohydrates relative to the forested soils. The susceptibility of the cultivated soils to loss in structural stability reflected this initial aggregation which was greater in the more stable clayey than the fragile sandy soils. The aggregate stability of either the forested or the cultivated soil could not be accounted for by the levels of OC or total carbohydrates in the soil.  相似文献   

20.
Carbon cycling in cultivated land and its global significance   总被引:11,自引:0,他引:11  
Long-term data from Sanborn Field, one of the oldest experimental fields in the USA, were used to determine the direction of soil organic carbon (SOC) dynamics in cultivated land. Changes in agriculture in the last 50 years including introduction of more productive varieties, wide scale use of mineral fertilizers and reduced tillage caused increases in total net annual production (TNAP), yields and SOC content. TNAP of winter wheat more than doubled during the last century, rising from 2.0–2.5 to 5–6 Mg ha–1 of carbon, TNAP of corn rose from 3–4 to 9.5–11.0 Mg ha–1 of carbon. Amounts of carbon returned annually with crop residues increased even more drastically, from less than 1 Mg ha–1 in the beginning of the century to 3–3.5 Mg ha–1 for wheat and 5–6 Mg ha–1 for corn in the 90s. These amounts increased in a higher proportion because in the early 50s removal of postharvest residues from the field was discontinued. SOC during the first half of the century, when carbon input was low, was mineralized at a high rate: 89 and 114 g m–2 y–1 under untreated wheat and corn, respectively. Application of manure decreased losses by half, but still the SOC balance remained negative. Since 1950, the direction of the carbon dynamics has reversed: soil under wheat monocrop (with mineral fertilizer) accumulated carbon at a rate about 50 g m–2 y–1, three year rotation (corn/wheat/clover) with manure and nitrogen applications sequestered 150 g m2 y–1 of carbon. Applying conservative estimates of carbon sequestration documented on Sanborn Field to the wheat and corn production area in the USA, suggests that carbon losses to the atmosphere from these soils were decreased by at least 32 Tg annually during the last 40–50 years. Our computations prove that cultivated soils under proper management exercise a positive influence in the current imbalance in the global carbon budget.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号