首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Preserving biodiversity is a global challenge requiring data on species’ distribution and abundance over large geographic and temporal scales. However, traditional methods to survey mobile species’ distribution and abundance in marine environments are often inefficient, environmentally destructive, or resource‐intensive. Metabarcoding of environmental DNA (eDNA) offers a new means to assess biodiversity and on much larger scales, but adoption of this approach for surveying whole animal communities in large, dynamic aquatic systems has been slowed by significant unknowns surrounding error rates of detection and relevant spatial resolution of eDNA surveys. Here, we report the results of a 2.5 km eDNA transect surveying the vertebrate fauna present along a gradation of diverse marine habitats associated with a kelp forest ecosystem. Using PCR primers that target the mitochondrial 12S rRNA gene of marine fishes and mammals, we generated eDNA sequence data and compared it to simultaneous visual dive surveys. We find spatial concordance between individual species’ eDNA and visual survey trends, and that eDNA is able to distinguish vertebrate community assemblages from habitats separated by as little as ~60 m. eDNA reliably detected vertebrates with low false‐negative error rates (1/12 taxa) when compared to the surveys, and revealed cryptic species known to occupy the habitats but overlooked by visual methods. This study also presents an explicit accounting of false negatives and positives in metabarcoding data, which illustrate the influence of gene marker selection, replication, contamination, biases impacting eDNA count data and ecology of target species on eDNA detection rates in an open ecosystem.  相似文献   

2.
While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over great distances, inducing false‐positive species detection, leading to inaccurate biodiversity assessments and, ultimately, mismanagement of marine environments. In this study, we determined the ability of eDNA metabarcoding surveys to distinguish localized signals obtained from four marine habitats within a small spatial scale (<5 km) subject to significant tidal and along‐shore water flow. Our eDNA metabarcoding survey detected 86 genera, within 77 families and across 11 phyla using three established metabarcoding assays targeting fish (16S rRNA gene), crustacean (16S rRNA gene) and eukaryotic (cytochrome oxidase subunit 1) diversity. Ordination and cluster analyses for both taxonomic and OTU data sets show distinct eDNA signals between the sampled habitats, suggesting dispersal of eDNA among habitats was limited. Individual taxa with strong habitat preferences displayed localized eDNA signals in accordance with their respective habitat, whereas taxa known to be less habitat‐specific generated more ubiquitous signals. Our data add to evidence that eDNA metabarcoding surveys in marine environments detect a broad range of taxa that are spatially discrete. Our work also highlights that refinement of assay choice is essential to realize the full potential of eDNA metabarcoding surveys in marine biodiversity monitoring programs.  相似文献   

3.
Environmental DNA (eDNA) analysis has seen rapid development in the last decade, as a novel biodiversity monitoring method. Previous studies have evaluated optimal strategies, at several experimental steps of eDNA metabarcoding, for the simultaneous detection of fish species. However, optimal sampling strategies, especially the season and the location of water sampling, have not been evaluated thoroughly. To identify optimal sampling seasons and locations, we performed sampling monthly or at two‐monthly intervals throughout the year in three dam reservoirs. Water samples were collected from 15 and nine locations in the Miharu and Okawa dam reservoirs in Fukushima Prefecture, respectively, and five locations in the Sugo dam reservoir in Hyogo Prefecture, Japan. One liter of water was filtered with glass‐fiber filters, and eDNA was extracted. By performing MiFish metabarcoding, we successfully detected a total of 21, 24, and 22 fish species in Miharu, Okawa, and Sugo reservoirs, respectively. From these results, the eDNA metabarcoding method had a similar level of performance compared to conventional long‐term data. Furthermore, it was found to be effective in evaluating entire fish communities. The number of species detected by eDNA survey peaked in May in Miharu and Okawa reservoirs, and in March and June in Sugo reservoir, which corresponds with the breeding seasons of many of fish species inhabiting the reservoirs. In addition, the number of detected species was significantly higher in shore, compared to offshore samples in the Miharu reservoir, and a similar tendency was found in the other two reservoirs. Based on these results, we can conclude that the efficiency of species detection by eDNA metabarcoding could be maximized by collecting water from shore locations during the breeding seasons of the inhabiting fish. These results will contribute in the determination of sampling seasons and locations for fish fauna survey via eDNA metabarcoding, in the future.  相似文献   

4.
Environmental DNA (eDNA) analysis is a rapid, cost‐effective, non‐invasive biodiversity monitoring tool which utilises DNA left behind in the environment by organisms for species detection. The method is used as a species‐specific survey tool for rare or invasive species across a broad range of ecosystems. Recently, eDNA and “metabarcoding” have been combined to describe whole communities rather than focusing on single target species. However, whether metabarcoding is as sensitive as targeted approaches for rare species detection remains to be evaluated. The great crested newt Triturus cristatus is a flagship pond species of international conservation concern and the first UK species to be routinely monitored using eDNA. We evaluate whether eDNA metabarcoding has comparable sensitivity to targeted real‐time quantitative PCR (qPCR) for T. cristatus detection. Extracted eDNA samples (N = 532) were screened for T. cristatus by qPCR and analysed for all vertebrate species using high‐throughput sequencing technology. With qPCR and a detection threshold of 1 of 12 positive qPCR replicates, newts were detected in 50% of ponds. Detection decreased to 32% when the threshold was increased to 4 of 12 positive qPCR replicates. With metabarcoding, newts were detected in 34% of ponds without a detection threshold, and in 28% of ponds when a threshold (0.028%) was applied. Therefore, qPCR provided greater detection than metabarcoding but metabarcoding detection with no threshold was equivalent to qPCR with a stringent detection threshold. The proportion of T. cristatus sequences in each sample was positively associated with the number of positive qPCR replicates (qPCR score) suggesting eDNA metabarcoding may be indicative of eDNA concentration. eDNA metabarcoding holds enormous potential for holistic biodiversity assessment and routine freshwater monitoring. We advocate this community approach to freshwater monitoring to guide management and conservation, whereby entire communities can be initially surveyed to best inform use of funding and time for species‐specific surveys.  相似文献   

5.
Given their positioning and biological productivity, estuaries have long represented key providers of ecosystem services and consequently remain under remarkable pressure from numerous forms of anthropogenic impact. The monitoring of fish communities in space and time is one of the most widespread and established approaches to assess the ecological status of estuaries and other coastal habitats, but traditional fish surveys are invasive, costly, labour intensive and highly selective. Recently, the application of metabarcoding techniques, on either sediment or aqueous environmental DNA, has rapidly gained popularity. Here, we evaluate the application of a novel, high‐throughput DNA‐based monitoring tool to assess fish diversity, based on the analysis of the gut contents of a generalist predator/scavenger, the European brown shrimp, Crangon crangon. Sediment and shrimp samples were collected from eight European estuaries, and DNA metabarcoding (using both 12S and COI markers) was carried out to infer fish assemblage composition. We detected 32 teleost species (16 and 20, for 12S and COI, respectively). Twice as many species were recovered using metabarcoding than by traditional net surveys. By comparing and interweaving trophic, environmental DNA and traditional survey‐based techniques, we show that the DNA‐assisted gut content analysis of a ubiquitous, easily accessible, generalist species may serve as a powerful, rapid and cost‐effective tool for large‐scale, routine estuarine biodiversity monitoring.  相似文献   

6.
Freshwater fish biodiversity is quickly decreasing and requires effective monitoring and conservation. Environmental DNA (eDNA)‐based methods have been shown to be highly sensitive and cost‐efficient for aquatic biodiversity surveys, but few studies have systematically investigated how spatial sampling design affects eDNA‐detected fish communities across lentic systems of different sizes. We compared the spatial patterns of fish diversity determined using eDNA in three lakes of small (SL; 3 ha), medium (ML; 122 ha) and large (LL; 4,343 ha) size using a spatially explicit grid sampling method. A total of 100 water samples (including nine, 17 and 18 shoreline samples and six, 14 and 36 interior samples from SL, ML and LL, respectively) were collected, and fish communities were analysed using eDNA metabarcoding of the mitochondrial 12S region. Together, 30, 35 and 41 fish taxa were detected in samples from SL, ML, and LL, respectively. We observed that eDNA from shoreline samples effectively captured the majority of the fish diversity of entire waterbodies, and pooled samples recovered fewer species than individually processed samples. Significant spatial autocorrelations between fish communities within 250 m and 2 km of each other were detected in ML and LL, respectively. Additionally, the relative sequence abundances of many fish species exhibited spatial distribution patterns that correlated with their typical habitat occupation. Overall, our results support the validity of a shoreline sampling strategy for eDNA‐based fish community surveys in lentic systems but also suggest that a spatially comprehensive sampling design can reveal finer distribution patterns of individual species.  相似文献   

7.
8.
Freshwater fauna are particularly sensitive to environmental change and disturbance. Management agencies frequently use fish and amphibian biodiversity as indicators of ecosystem health and a way to prioritize and assess management strategies. Traditional aquatic bioassessment that relies on capture of organisms via nets, traps and electrofishing gear typically has low detection probabilities for rare species and can injure individuals of protected species. Our objective was to determine whether environmental DNA (eDNA) sampling and metabarcoding analysis can be used to accurately measure species diversity in aquatic assemblages with differing structures. We manipulated the density and relative abundance of eight fish and one amphibian species in replicated 206‐L mesocosms. Environmental DNA was filtered from water samples, and six mitochondrial gene fragments were Illumina‐sequenced to measure species diversity in each mesocosm. Metabarcoding detected all nine species in all treatment replicates. Additionally, we found a modest, but positive relationship between species abundance and sequencing read abundance. Our results illustrate the potential for eDNA sampling and metabarcoding approaches to improve quantification of aquatic species diversity in natural environments and point the way towards using eDNA metabarcoding as an index of macrofaunal species abundance.  相似文献   

9.
Determining the species compositions of local assemblages is a prerequisite to understanding how anthropogenic disturbances affect biodiversity. However, biodiversity measurements often remain incomplete due to the limited efficiency of sampling methods. This is particularly true in freshwater tropical environments that host rich fish assemblages, for which assessments are uncertain and often rely on destructive methods. Developing an efficient and nondestructive method to assess biodiversity in tropical freshwaters is highly important. In this study, we tested the efficiency of environmental DNA (eDNA) metabarcoding to assess the fish diversity of 39 Guianese sites. We compared the diversity and composition of assemblages obtained using traditional and metabarcoding methods. More than 7,000 individual fish belonging to 203 Guianese fish species were collected by traditional sampling methods, and ~17 million reads were produced by metabarcoding, among which ~8 million reads were assigned to 148 fish taxonomic units, including 132 fish species. The two methods detected a similar number of species at each site, but the species identities partially matched. The assemblage compositions from the different drainage basins were better discriminated using metabarcoding, revealing that while traditional methods provide a more complete but spatially limited inventory of fish assemblages, metabarcoding provides a more partial but spatially extensive inventory. eDNA metabarcoding can therefore be used for rapid and large‐scale biodiversity assessments, while at a local scale, the two approaches are complementary and enable an understanding of realistic fish biodiversity.  相似文献   

10.
研究使用环境DNA宏条形码(eDNA metabarcoding)检测洱海鱼类多样性, 探索适用于洱海鱼类多样性监测和保护的新方法。通过水样采集、过滤、eDNA提取、遗传标记扩增、测序与生物信息分析的环境DNA宏条形码标准化分析流程, 从洱海16个采样点中获得可检测的9个采样点数据, 共检测出17种鱼类, 其中土著种5种、外来种12种; 鲫(Carassius auratus)、鳙(Hypophthalmichthys nobilis)、麦穗鱼(Pseudorasbora parva)、泥鳅(Misgurnus anguillicaudatus)和食蚊鱼(Gambusia affinis)为优势种。研究结果表明虽然环境DNA宏条形码无法完全替代传统的鱼类监测方法, 但作为一种新兴的生物多样性监测手段, 其可用于快速检测洱海鱼类多样性及其空间分布。  相似文献   

11.
The genomic revolution has fundamentally changed how we survey biodiversity on earth. High‐throughput sequencing (“HTS”) platforms now enable the rapid sequencing of DNA from diverse kinds of environmental samples (termed “environmental DNA” or “eDNA”). Coupling HTS with our ability to associate sequences from eDNA with a taxonomic name is called “eDNA metabarcoding” and offers a powerful molecular tool capable of noninvasively surveying species richness from many ecosystems. Here, we review the use of eDNA metabarcoding for surveying animal and plant richness, and the challenges in using eDNA approaches to estimate relative abundance. We highlight eDNA applications in freshwater, marine and terrestrial environments, and in this broad context, we distill what is known about the ability of different eDNA sample types to approximate richness in space and across time. We provide guiding questions for study design and discuss the eDNA metabarcoding workflow with a focus on primers and library preparation methods. We additionally discuss important criteria for consideration of bioinformatic filtering of data sets, with recommendations for increasing transparency. Finally, looking to the future, we discuss emerging applications of eDNA metabarcoding in ecology, conservation, invasion biology, biomonitoring, and how eDNA metabarcoding can empower citizen science and biodiversity education.  相似文献   

12.
Assessment of fish biodiversity in freshwater environments is challenging, especially when rare species or species with low population densities exist. Environmental DNA is becoming a common tool in molecular ecology to detect target species found in the environment. Moreover, eDNA metabarcoding is now used to determine a complete list of target organisms without any prior knowledge on the species inhabiting the environment. This study is the first environmental DNA study designed to assess complete ichthyofauna of the largest lake in Marmara Region of Turkey. For this purpose, an eDNA metabarcoding approach enhanced with tagged primers according to sampling stations for a station specific species listing was used to revise the ichthyofauna of Lake Iznik. Results of pyrosequencing data indicate the presence of 23 species in the lake, five of which are reported for the first time. Short fragment of cytochrome b gene sequences amplified in this study were able to make identifications at species level and the eDNA metabarcoding approach was more cost effective and precise compared to conventional surveys. More molecular data from further studies will enhance the reference databases and eDNA metabarcoding could be used more efficiently as an important molecular tool in biodiversity assessment studies.  相似文献   

13.
Because significant global changes are currently underway in the Arctic, creating a large‐scale standardized database for Arctic marine biodiversity is particularly pressing. This study evaluates the potential of aquatic environmental DNA (eDNA) metabarcoding to detect Arctic coastal biodiversity changes and characterizes the local spatio‐temporal distribution of eDNA in two locations. We extracted and amplified eDNA using two COI primer pairs from ~80 water samples that were collected across two Canadian Arctic ports, Churchill and Iqaluit, based on optimized sampling and preservation methods for remote regions surveys. Results demonstrate that aquatic eDNA surveys have the potential to document large‐scale Arctic biodiversity change by providing a rapid overview of coastal metazoan biodiversity, detecting nonindigenous species, and allowing sampling in both open water and under the ice cover by local northern‐based communities. We show that DNA sequences of ~50% of known Canadian Arctic species and potential invaders are currently present in public databases. A similar proportion of operational taxonomic units was identified at the species level with eDNA metabarcoding, for a total of 181 species identified at both sites. Despite the cold and well‐mixed coastal environment, species composition was vertically heterogeneous, in part due to river inflow in the estuarine ecosystem, and differed between the water column and tide pools. Thus, COI‐based eDNA metabarcoding may quickly improve large‐scale Arctic biomonitoring using eDNA, but we caution that aquatic eDNA sampling needs to be standardized over space and time to accurately evaluate community structure changes.  相似文献   

14.
Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90–0.99) vs. 0.58 (CI = 0.50–0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA‐based approach has the potential to become the next‐generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.  相似文献   

15.
High‐throughput sequencing of environmental DNA (i.e., eDNA metabarcoding) has become an increasingly popular method for monitoring aquatic biodiversity. At present, such analyses require target‐specific primers to amplify DNA barcodes from co‐occurring species, and this initial amplification can introduce biases. Understanding the performance of different primers is thus recommended prior to undertaking any metabarcoding initiative. While multiple software programs are available to evaluate metabarcoding primers, all programs have their own strengths and weaknesses. Therefore, a robust in silico workflow for the evaluation of metabarcoding primers will benefit from the use of multiple programs. Furthermore, geographic differences in species biodiversity are likely to influence the performance of metabarcoding primers and further complicate the evaluation process. Here, an in silico workflow is presented that can be used to evaluate the performance of metabarcoding primers on an ecoregion scale. This workflow was used to evaluate the performance of published and newly developed eDNA metabarcoding primers for the freshwater fish biodiversity of the Murray–Darling Basin (Australia). To validate the in silico workflow, a subset of the primers, including one newly designed primer pair, were used in metabarcoding analyses of an artificial DNA community and eDNA samples. The results show that the in silico workflow allows for a robust evaluation of metabarcoding primers and can reveal important trade‐offs that need to be considered when selecting the most suitable primer. Additionally, a new primer pair was described and validated that allows for more robust taxonomic assignments and is less influenced by primer biases compared to commonly used fish metabarcoding primers.  相似文献   

16.
Environmental DNA (eDNA) metabarcoding, a technique for retrieving multispecies DNA from environmental samples, can detect a diverse array of marine species from filtered seawater samples. There is a growing potential to integrate eDNA alongside existing monitoring methods in order to establish or improve the assessment of species diversity. Remote island reefs are increasingly vulnerable to climate‐related threats and as such there is a pressing need for cost‐effective whole‐ecosystem surveying to baseline biodiversity, study assemblage changes and ultimately develop sustainable management plans. We investigated the utility of eDNA metabarcoding as a high‐resolution, multitrophic biomonitoring tool at the Cocos (Keeling) Islands, Australia (CKI)—a remote tropical coral reef atoll situated within the eastern Indian Ocean. Metabarcoding assays targeting the mitochondrial 16S rRNA and CO1 genes, as well as the 18S rRNA nuclear gene, were applied to 252 surface seawater samples collected from 42 sites within a 140 km2 area. Our assays successfully detected a wide range of bony fish and elasmobranchs (244 taxa), crustaceans (88), molluscs (37) and echinoderms (7). Assemblage composition varied significantly between sites, reflecting habitat partitioning across the island ecosystem and demonstrating the localisation of eDNA signals, despite extensive tidal and oceanic movements. In addition, we document putative new occurrence records for 46 taxa and compare the efficiency of our eDNA approach to visual survey techniques at CKI. Our study demonstrates the utility of a multimarker metabarcoding approach in capturing multitrophic biodiversity across an entire coral reef atoll and sets an important baseline for ongoing monitoring and management.  相似文献   

17.
底栖动物是淡水生态系统中物种多样性最高的类群,也是应用最广泛的水质监测指示生物之一。传统的底栖动物监测以形态学为基础,耗时费力,无法满足流域尺度大规模监测的需求。环境DNA-宏条形码技术是一种新兴的生物监测方法,其与传统方法相比优势在于采样方法简单、低成本、高灵敏度,不受生物样本和环境状况的影响,不依赖分类专家和鉴定资料,能够快速准确地对多个类群进行大规模、高通量的物种鉴定。然而,在实际应用中该方法的效果受诸多因素的影响,不同的方法、流程往往会产生差异较大的结果。鉴于此,着重分析总结了应用环境DNA-宏条形码技术监测底栖动物的关键影响因素,包括样品采集与处理流程、分子标记选择、引物设计、PCR偏好性、参考数据库的完整性及相应的优化。并基于此探讨了提高环境DNA-宏条形码技术在底栖动物监测效率和准确率的途径,以期为底栖动物环境DNA-宏条形码监测方案的制定提供可靠的参考。最后对该技术在底栖动物监测和水质评价中的最新发展方向进行了展望。  相似文献   

18.
19.
Ecological restoration is a globally important and well‐financed management intervention used to combat biodiversity declines and land degradation. Most restoration aims to increase biodiversity towards a reference state, but there are concerns that intended outcomes are not reached due to unsuccessful interventions and land‐use legacy issues. Monitoring biodiversity recovery is essential to measure success; however, most projects remain insufficiently monitored. Current field‐based methods are hard to standardize and are limited in their ability to assess important components of ecosystems, such as bacteria. High‐throughput amplicon sequencing of environmental DNA (metabarcoding of eDNA) has been proposed as a cost‐effective, scalable and uniform ecological monitoring solution, but its application in restoration remains largely untested. Here we show that metabarcoding of soil eDNA is effective at demonstrating the return of the native bacterial community in an old field following native plant revegetation. Bacterial composition shifted significantly after 8 years of revegetation, where younger sites were more similar to cleared sites and older sites were more similar to remnant stands. Revegetation of the native plant community strongly impacted on the belowground bacterial community, despite the revegetated sites having a long and dramatically altered land‐use history (i.e. >100 years grazing). We demonstrate that metabarcoding of eDNA provides an effective way of monitoring changes in bacterial communities that would otherwise go unchecked with conventional monitoring of restoration projects. With further development, awareness of microbial diversity in restoration has significant scope for improving the efficacy of restoration interventions more broadly.  相似文献   

20.
Current methods for monitoring marine fish (including bony fishes and elasmobranchs) diversity mostly rely on trawling surveys, which are invasive, costly, and time‐consuming. Moreover, these methods are selective, targeting a subset of species at the time, and can be inaccessible to certain areas. Here, we used environmental DNA (eDNA), the DNA present in the water column as part of shed cells, tissues, or mucus, to provide comprehensive information about fish diversity in a large marine area. Further, eDNA results were compared to the fish diversity obtained in pelagic trawls. A total of 44 5 L‐water samples were collected onboard a wide‐scale oceanographic survey covering about 120,000 square kilometers in Northeast Atlantic Ocean. A short region of the 12S rRNA gene was amplified and sequenced through metabarcoding generating almost 3.5 million quality‐filtered reads. Trawl and eDNA samples resulted in the same most abundant species (European anchovy, European pilchard, Atlantic mackerel, and blue whiting), but eDNA metabarcoding resulted in more detected bony fish and elasmobranch species (116) than trawling (16). Although an overall correlation between fishes biomass and number of reads was observed, some species deviated from the common trend, which could be explained by inherent biases of each of the methods. Species distribution patterns inferred from eDNA metabarcoding data coincided with current ecological knowledge of the species, suggesting that eDNA has the potential to draw sound ecological conclusions that can contribute to fish surveillance programs. Our results support eDNA metabarcoding for broad‐scale marine fish diversity monitoring in the context of Directives such as the Common Fisheries Policy or the Marine Strategy Framework Directive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号