首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Such (+)- and (?)-cis-cycloheximide isomers as isocyclohcximide (1a, 1b), α-epiisocycloheximide (2a, 2b) and neocycloheximide (3a, 3b) were synthesized by aldol condensation of (?)-(2R, 4R)- and (+)-(2S, 4S)-cis-2,4-dimethyl-1-cyclohexanone (5a, 5b). obtained by microbial resolution, with 4-(2-oxoethyl)-2,6-piperidinedione (7). The absolute configuration of the (?)-cis-ketone 5a was confirmed by chemical correlation with natural (2S, 4S, 6S, αR)-cycloheximide (4). The newly synthesized isomer, (?)-α-epiisocycloheximide (2b), showed strong antimicrobial activity against S. cerevisiae andP. oryzae close to that of natural cycloheximide (4).  相似文献   

2.
Asymmetric hydrolysis of acetate (10) of (±)-t-2,t-4-dimethyl-r-l-cyclohexanol with Bacillus subtilis var. niger gave (?)-(lS,2S,4S)-2,4-dimethyl-l-cyclohexanol (6a) and (+)-(1R,2R,4R)-acetate (10b) with high optical purities. Optically pure (?) and (+)-alcohols (6a and 6b) were prepared via corresponding 3,5-dinitrobenzoates. Oxidation of alcohols (6a and 6b) with chromic acid gave optically pure (?)-(2S,4S) and (+)-(2R,4R)-2,4-dimethyl-l-cyclohexanones (2a and 2b), respectively.  相似文献   

3.
The optically active samin type of lignan, (1R,2S,5R, 6S)-6-(2-methoxy-4,5-methylenedioxyphenyl)-3,7-dioxabicyclo[3.3.0]octan-2-ol, was stereoselectively synthesized from L-glutamic acid via (2R,3R)-2-[(1S and R)- 1-[(tert-butyldimethylsilyl)oxy]-1-(2-methoxy-4,5-methylenedioxyphenyl)methyl]-3-[(tert-butyldiphenylsilyl)oxy]methyl-1,4-butanediol.  相似文献   

4.
(+)-Juvabione 1 was synthesized by employing (1R,4S,6S)-6-hydroxybicyclo[2.2.2]octan-2-one 2 as a chiral source.

(+)-Juvabione 1 shows juvenile hormone activity, and its racemate has been repeatedly synthesized.1) Optically active 1 was synthesized by Pawson et al. from (+)-limonene, 2) and by Trost et al. from (+)-perillaldehyde.3) However, their syntheses were not at all efficient for providing a suitable amount of optically active 1.  相似文献   

5.
Optically active tetrahydroisoquinoline alkaloids, (R)-(+)-higenamine (1R) and (S)-(−)-higenamine (1 S), and their optically active 1-naphthylmethyl analogues (2 and 3), were synthesized by enantioselective hydrogenation of the corresponding dihydroisoquinoline intermediates 7 as a key step. The evaluation of the platelet anti-aggregation effect demonstrated clearly that the (S)-(−)-enantiomers, 1S, 2S, and 3S, had higher inhibitory potency than the corresponding (R)-(+)-antipodes, 1R, 2R, and 3R, respectively, to platelet aggregation induced by epinephrine. 1S enantiomer was superior to the corresponding 1R enantiomer in attenuating all of the disseminated intravascular coagulation (DIC) and multiple organ failure (MOF) parameters tested, while the S enantiomers 2S and 3S ameliorated some of the DIC and MOF parameters more effectively than the corresponding antipodes 2R and 3R.  相似文献   

6.
( – )-Invictolide [(3R,5R,6S,1′R)-3,5-dimethyl-6-(1′-methylbutyl)-tetrahydro-2H-pyran-2-one] was synthesized in 16 steps from 2-methylpentanal.  相似文献   

7.
The enantiomers of cis-verbenol (4a and 4a′) were first synthesized in optically pure state. (1S, 4S, 5S)-2-Pinen-4-ol (4a′) was dextrorotatory in acetone or in methanol but it was levorotatory in chloroform; cis-verbenols are indistinguishable by a prefix (+) or (?). The designation of the Ips pheromone as (+)-cis-verbenol is therefore ambiguous and it should be called as (1S, 4S, 5S)-2-pinen-4-ol (4a′) or (S)-cis-verbenol.  相似文献   

8.
As a model experiment for the stereoselective synthesis of optically active cis-α,β-dibenzyl-α-hydroxy-γ-butyrolactone, (2R, 3S)-2-benzyl-2-hydroxy-3-(3,4-methylenedioxybenzyl)-γ-butyrolactone (3) was stereoselectively synthesized from L-(+)-arabinose.  相似文献   

9.
(2R*,4S*,6S*,αS*)- and (2R,4R,6RS)-Streptovitacin-C2 (STV-C2) (1a and 1b) were synthesized by an aldol condensation of (2R*,4S*)- or (2R,4R)-2,4-dimethyl-2-trimethylsiloxy-1-cyclohexanone (15a or 15b) with 4-(2-oxoethyl)-2,6-piperidinedione (16), which was followed by desilylation of the products. The stereochemistry of the synthesized STV-C2 isomers (1a and 1b) was elucidated by NMR. STV-C2 isomers (1a and 1b) did not show strong antimicrobial activity against Saccharomyces cerevisiae and Pyricularia oryzae.  相似文献   

10.
Abstract

(2R,5S)-5-Amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-y1]-1,2,4-triazine-3(2H)-one (8) and (2R,5R)-5-amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-y1]-1,2,4-triazine-3(2H)-one (9) have been synthesized via a multi-step procedure from 6-azauridine. (2R,5S)-4-Amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-y1]-1,3,5-triazine-2(1H)-one (11) and (2R,5R)-4-amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-y1]-1,3,5-triazine-2(1H)-one (12), and the fluorosubstituted 3-deazanucleosides (19–24) have been synthesized by the transglycosylation of (2R,5S)-1-{2-[[(tert-butyldiphenylsilyl) oxy]methyl]-1,3-oxathiolan-5-y1} cytosine (2) with silylated 5-azacytosine and the corresponding silylated fluorosubstituted 3-deazacytosines, respectively, in the presence of trimethylsilyl trifluoromethanesulfonate as the catalyst in anhydrous dichloroethane, followed by deprotection of the blocking groups. These compounds were tested in vitro for cytotoxicity against L1210, B16F10, and CCRF-CEM tumor cell lines and for antiviral activity against HIV-1 and HBV.  相似文献   

11.
Two epimers of methyl jasmonate were optically resolved by capillary gas chromatography, using heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin as the chiral stationary phase. In the tea volatile concentrates, both of these epimers were present as only one enantiomer, their absolute configurations being ascertained as (–)-(1R,2R)-methyl jasmonate and (+)-(1R,2S)-methyl epijasmonate.

The thermal isomerization of methyl epijamonate to methyl jasmonate was also clarified by optically resolved gas chromatography to have occurred at the asymmetric carbon of the C-2 position that is connected to the carbonyl group.  相似文献   

12.
The lipase-catalyzed optical resolution of 2-, 3-, and 5-hydroxyalkyl phosphorus compounds 1 provided the corresponding optically pure diastereomers in good yields. (SP, R)- and (RP, S)-1 were acylated faster than (SP, S)- and (RP, R)-1. The stereoselectivity at the phosphorus atom changed with the flexibility of the active sites in the lipases. The stereoselectivity at the phosphorus atom was higher in the reaction of 1a than in the reaction of 1b,c. The reaction rate of -hydroxyalkylphosphine oxide 1c was faster than that of 1a, although less enantioselectivity was observed at the phosphorus atom.  相似文献   

13.
A stereochemically pure mimic of the sex pheromone components of the pine sawfly was synthesized. Acetates of (2S,3S)- and (2S,3R)-3-methylpentadecan-2-ol were prepared, and the pheromone activity of their mixture was compared with that of a true pheromone mixture of the acetates of (2S,3S,7S)- and (2S,3R,7R)-3,7-dimethylpentadecan-2-ol. Although the potency of the true pheromone system was 50 times as high as that of the pheromone mimic, the mimic could attract a sufficient number of male sawflies in the field test.  相似文献   

14.
A simple and efficient synthesis of (±)-massoilactone (1) as a key substance for the butter and milk flavor was accomplished from n-hexanal in only a few steps. Application of its racemic synthesis enabled natural (R)-(?)- and unnatural (S)-(+)-massoilactone (1a, 1b) to be synthesized by starting from commercially available (R)-(+)-1,2-epoxyheptane (5).  相似文献   

15.
The synthesis of methyl (?)-shikimate [(?)-2] was achieved via lipase-catalyzed optical resolution of (1S*,4R*,5R*)-4-hydroxy-6-oxabicyclo[3.2.1]oct-2-en-7-one (3). Transesterification of (±)-3 and vinyl acetate with lipase MY and subsequent hydrolysis gave optically pure (?)-3. This compound was converted to (?)-2 in two steps.  相似文献   

16.
Optically active 1,4-thiazane-3-carboxylic acid [TCA] was synthesized from cysteine via optical resolution by preferential crystallization. The intermediate (RS)-2-amino-3-[(2-chloroethyl)sulfanyl]propanoic acid hydrochlo-ride [(RS)-ACS?HCl] was found to exist as a conglomerate based on its melting point, solubility and IR spectrum. (RS)-ACS?HCl was optically resolved by preferential crystallization to yield (R)- and (S)-ACS?HCl. (R)- and (S)-ACS?HCl thus obtained were recrystallized from a mixture of hydrochloric acid and 2-propanol, taking account of the solubility of (RS)-ACS?HCl, efficiently yielding both enantiomers in optically pure forms. (R)- and (S)-TCA were then respectively synthesized by the cyclization of (R)- and (S)-ACS?HCl in ethanol in the presence of triethylamine.  相似文献   

17.
Two new sterols 1 and 2 and five known ones 3 – 7 were isolated for the first time from the fruiting bodies of Cortinarius glaucopus. Their structures were established by 1‐ and 2D‐NMR spectra and HR‐FABS‐MS. The relative configuration of 1 was firmly determined by comparison of the observed 1H–1H couplings and NOESY correlations, with those predicted for the computed geometries of the conformers. Calculations were performed by means of DFT with the B3LYP functional at 6‐31 + G(d,p) level of theory, in CHCl3 as the solvent. The structures of the new ergosterol derivatives, called glaucoposterol A ( 1 ) and B ( 2 ), were thus established as (3S,5R,7R,10R,13R,17R,20S,22R,23R,24R)‐5,6‐epoxy‐3,7,23‐trihydroxystrophast‐8‐en‐14‐one and (22E,3S,5S,9S,10R,13R,17R,20R,24R)‐3,5‐dihydroxyergosta‐6,8(14),22‐trien‐15‐one, respectively. Moreover, the configuration of known strophasterol C ( 3 ) was determined as (3S,5R,6S,7R,10R,13R,17R,20S,22S,24R). Glaucoposterol A ( 1 ) and strophasterol C ( 3 ) represent the second finding in nature of steroids with the rare strophastane skeleton.  相似文献   

18.
The pyridine-derived biomolecules are of considerable interest in developing medicinal compounds with various specific activities. Novel ammonium salts of pyridoxine, (S)-(–)-nicotine and nicotinamide with O,O-diorganyl dithiophosphoric acids (DTPA) were synthesized and characterized. The complexation of chiral monoterpenyl DTPA, including (S)-(–)-menthyl, (R)-(+)-menthyl, (1R)-endo-(+)-fenchyl, (1S,2S,3S,5R)-(+)-isopinocampheolyl derivatives, with pyridoxine and nicotine provided effective antibacterial compounds 3a,b,e,f, and 5a,b,d,f with MIC values against Gram-positive bacteria as low as 10?µM (6?µg/mL). Two selected pyridoxine and nicotine salts based on menthyl DTPA 3a and 5a were similarly active against antibiotic-resistant bacteria from burn wounds including MRSA. The compounds had enhanced amphiphilic and hemolytic properties and effectively altered surface characteristics and matrix-secreting ability of P. aeroginosa and S. aureus. MBC/MIC ratios of 3a and 5a suggested the bactericidal mode of their action. Furthermore, the compounds exhibited moderate cytotoxicity towards human skin fibroblasts (IC50?=?48.6 and 57.6?µM, respectively, 72?h), encouraging their further investigation as potential antimicrobials against skin and wound infections.  相似文献   

19.
Abstract

The synthesis of (-)-3-[(1S,2S,3R,4R)-2,3-dihydroxy-4-(hydroxmethyl) cyclopentan-1-yl]-1H-pyrazolo[4,3-c]pyridme-4,6(5H,7H)-dione 3 was accomplished via enantiomerically pure carbocyclic 5-(β-D-ribofuranosyl)tetrazole 4.  相似文献   

20.
Chiral high‐performance liquid chromatography (HPLC) separation of trans‐bis[2‐(2‐pyridyl)aminophenolato] dichlorocyclotriphosphazene 1 was achieved and the absolute configuration of (+)-1 was assigned to be S,S by single‐crystal X‐ray structural analysis. The optically pure 1,2‐diphenyl‐1,2‐ethanediolate derivatives (+)‐ 2a and (?)‐ 2b were synthesized by the reactions of (+)-1 and (-)-1 with (R,R)‐hydrobenzoin, respectively, in refluxing toluene in the presence of an excess amount of triethylamine and a catalytic amount of 4‐(dimethylamino)pyridine. The racemization of the enantiomers of 1 and the epimerization of diastereomers of 2 were not observed in refluxing toluene neither under acidic nor basic conditions. The stereochemistry of (+)-1 was confirmed by the crystal structure of (+)‐ 2a and bis[(4‐methyl‐2‐pyridyl)oxy]cyclotriphosphazene (+)-3 derived from (+)-1 . Chirality 28:556–561, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号