首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Many species have fragmented distribution with small isolated populations suffering inbreeding depression and/or reduced ability to evolve. Without gene flow from another population within the species (genetic rescue), these populations are likely to be extirpated. However, there have been only ~ 20 published cases of such outcrossing for conservation purposes, probably a very low proportion of populations that would potentially benefit. As one impediment to genetic rescues is the lack of an overview of the magnitude and consistency of genetic rescue effects in wild species, I carried out a meta‐analysis. Outcrossing of inbred populations resulted in beneficial effects in 92.9% of 156 cases screened as having a low risk of outbreeding depression. The median increase in composite fitness (combined fecundity and survival) following outcrossing was 148% in stressful environments and 45% in benign ones. Fitness benefits also increased significantly with maternal ΔF (reduction in inbreeding coefficient due to gene flow) and for naturally outbreeding versus inbreeding species. However, benefits did not differ significantly among invertebrates, vertebrates and plants. Evolutionary potential for fitness characters in inbred populations also benefited from gene flow. There are no scientific impediments to the widespread use of outcrossing to genetically rescue inbred populations of naturally outbreeding species, provided potential crosses have a low risk of outbreeding depression. I provide revised guidelines for the management of genetic rescue attempts.  相似文献   

2.
Populations forced through bottlenecks typically lose genetic variation and exhibit inbreeding depression. ‘Genetic rescue’ techniques that introduce individuals from outbred populations can be highly effective in reversing the deleterious effects of inbreeding, but have limited application for the majority of endangered species, which survive only in a few bottlenecked populations. We tested the effectiveness of using highly inbred populations as donors to rescue two isolated and bottlenecked populations of the South Island robin (Petroica australis). Reciprocal translocations significantly increased heterozygosity and allelic diversity. Increased genetic diversity was accompanied by increased juvenile survival and recruitment, sperm quality, and immunocompetence of hybrid individuals (crosses between the two populations) compared with inbred control individuals (crosses within each population). Our results confirm that the implementation of ‘genetic rescue’ using bottlenecked populations as donors provides a way of preserving endangered species and restoring their viability when outbred donor populations no longer exist.  相似文献   

3.
Aims Many pine populations in Canada have fragmented distributions resulting from the effects of glaciations, overharvesting and white pine blister rust infections. Forest fragmentation can modify gene flow and reduce genetic diversity. Selective logging can reduce the density of trees, thereby altering mating patterns and increasing inbreeding. The hypothesis of the present study is that forest fragmentation will not increase inbreeding and will have no effect on genetic diversity parameters in the Canadian Pinus moniticola and P. strobus populations targeted because of (i) the long life span of the pine species, (ii) outbreeding and self-incompatibility of P. monticola and P. strobus and (iii) wind pollination resulting in high gene flow among populations. We studied the genetic diversity of P. strobus across its range in Canada, and we completed a detailed analysis of the genetic structure of P. monticola populations from western Canada using microsatellites genetic markers.Methods Seed samples from 10 P. monticola populations and 10 P. strobus populations were collected from western and eastern Canada, respectively. The mother trees included in seed lots were representative of each stand. Genomic DNA extracted from each sample was amplified with microsatellite primers. The intra- and interpopulation genetic diversity parameters were assessed using Popgene and Genepop softwares and the genetic distances among populations within each species using the PowerMarker software.Important findings Pinus monticola and P. strobus exhibited moderate to high genetic diversity. Also, both species showed low levels of inbreeding despite the geographic isolation and small stand size. Gene flow estimates were high and population differentiation values were relatively low for these fragmented forest sites.  相似文献   

4.
Habitat fragmentation is known to cause genetic differentiation between small populations of rare species and decrease genetic variation within such populations. However, common species with recently fragmented populations have rarely been studied in this context. We investigated genetic variation and its relationship to population size and geographical isolation of populations of the common plant species, Lychnis flos-cuculi L., in fragmented fen grasslands. We analysed 467 plants from 28 L. flos-cuculi populations of different sizes (60 000-54 000 flowering individuals) in northeastern Switzerland using seven polymorphic microsatellite loci. Genetic differentiation between populations is small (F(ST) = 0.022; amova; P < 0.001), suggesting that gene flow among populations is still high or that habitat fragmentation is too recent to result in pronounced differentiation. Observed heterozygosity (H(O) = 0.44) significantly deviates from Hardy-Weinberg equilibrium, and within-population inbreeding coefficient F(IS) is high (0.30-0.59), indicating a mixed mating breeding system with substantial inbreeding in L. flos-cuculi. Gene diversity is the only measure of genetic variation which decreased with decreasing population size (R = 0.42; P < 0.05). While our results do not indicate pronounced effects of habitat fragmentation on genetic variation in the still common L. flos-cuculi, the lower gene diversity of smaller populations suggests that the species is not entirely unaffected.  相似文献   

5.
Chybicki IJ  Oleksa A  Burczyk J 《Heredity》2011,107(6):589-600
Habitat fragmentation can have severe genetic consequences for trees, such as increased inbreeding and decreased effective population size. In effect, local populations suffer from reduction of genetic variation, and thus loss of adaptive capacity, which consequently increases their risk of extinction. In Europe, Taxus baccata is among a number of tree species experiencing strong habitat fragmentation. However, there is little empirical data on the population genetic consequences of fragmentation for this species. This study aimed to characterize local genetic structure in two natural remnants of English yew in Poland based on both amplified fragment length polymorphism (AFLP) and microsatellite (SSR) markers. We introduced a Bayesian approach that estimates the average inbreeding coefficient using AFLP (dominant) markers. Results showed that, in spite of high dispersal potential (bird-mediated seed dispersal and wind-mediated pollen dispersal), English yew populations show strong kinship structure, with a spatial extent of 50–100 m, depending on the population. The estimated inbreeding levels ranged from 0.016 to 0.063, depending on the population and marker used. Several patterns were evident: (1) AFLP markers showed stronger kinship structure than SSRs; (2) AFLP markers provided higher inbreeding estimates than SSRs; and (3) kinship structure and inbreeding were more pronounced in denser populations regardless of the marker used. Our results suggest that, because both kinship structure and (bi-parental) inbreeding exist in populations of English yew, gene dispersal can be fairly limited in this species. Furthermore, at a local scale, gene dispersal intensity can be more limited in a dense population.  相似文献   

6.
In fragmented populations, genetic drift and selection reduce genetic diversity, which in turn results in a loss of fitness or in a loss of evolvability. Genetic rescue, that is, controlled input of diversity from distant populations, may restore evolutionary potential, whereas outbreeding depression might counteract the positive effect of this strategy. We carried out self-pollination and crosses within and between populations in an experimental subdivided population of a selfing species, Triticum aestivum L., to estimate the magnitude of these two phenomena. Surprisingly, for a self-fertilizing species, we found significant inbreeding depression within each population for four of the six traits studied, indicating that mildly deleterious mutations were still segregating in these populations. The progeny of within- and between-population crosses was very similar, indicating low between-population heterosis and little outbreeding depression. We conclude that relatively large population effective sizes prevented fixation of a high genetic load and that local adaptation was limited in these recently diverged populations. The kinship coefficient estimated between the parents using 20 neutral markers was a poor predictor of the progeny phenotypic values, indicating that there was a weak link between neutral diversity and genes controlling fitness-related traits. These results show that when assessing the viability of natural populations and the need for genetic rescue, the use of neutral markers should be complemented with information about the presence of local adaptation in the subdivided population.  相似文献   

7.
Many species suffer from anthropogenic habitat fragmentation. The resulting small and isolated populations are more prone to extinction due to, amongst others, genetic erosion, inbreeding depression and Allee-effects. Genetic rescue can help mitigate such problems, but might result in outbreeding depression. We evaluated offspring fitness after selfing and outcrossing within and among three very small and isolated remnant populations of the heterostylous plant Primula vulgaris. We used greenhouse-grown offspring from these populations to test several fitness components. One population was fixed for the pin-morph, and was outcrossed with another population in the field to obtain seeds. Genetic diversity of parent and offspring populations was studied using microsatellites. Morph and population-specific heterosis, inbreeding and outbreeding depression were observed for fruit and seed set, seed weight and cumulative fitness. Highest fitness was observed in the field-outcrossed F1-population, which also showed outbreeding depression following subsequent between-population (back)crossing. Despite outbreeding depression, fitness was still relatively high. Inbreeding coefficients indicated that the offspring were more inbred than their parent populations. Offspring heterozygosity and inbreeding coefficients correlated with observed fitness. One population is evolving homostyly, showing a thrum morph with an elongated style and high autonomous fruit and seed set. This has important implications for conservation strategies such as genetic rescue, as the mating system will be altered by the introduction of homostyles.  相似文献   

8.
Sinojackia, a member of the family Styracaceae, is an endangered genus endemic to China. The number of populations and population size of Sinojackia have decreased sharply because of habitat fragmentation and destruction. We studied the genetic diversity of extant populations in two different cohorts (adult and seedling) using eight microsatellite markers to investigate the genetic footprints of habitat fragmentation in four recognized Sinojackia spp. and to develop appropriate conservation measures. Data on intrapopulational genetic diversity suggest that Sinojackia populations have maintained relatively high levels of genetic diversity and low levels of genetic differentiation despite severe fragmentation. The high genetic diversity may be explained by the outcrossing mating system and high longevity of Sinojackia spp. The amount of genetic variation is not associated with population size, which was also supported by bottleneck analysis. In the species studied, there was no significant difference in the genetic diversity between the two cohorts analysed. However, inbreeding increased from adult trees to seedling populations, suggesting that the higher proportion of biparental inbreeding in the recent generations of seedlings is the result of restricted current genetic flow caused by habitat fragmentation. Average seed set per population was not significantly correlated with either population size or genetic diversity. Conservation management should aim to monitor inbreeding and outbreeding depression carefully to ensure the in situ and ex situ conservation of Sinojackia spp. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

9.
The effects of inbreeding on fitness and themaintenance of genetic load in metapopulationsof the endangered Glanville fritillarybutterfly (Melitaea cinxia) were examinedin four laboratory experiments. In FinlandM. cinxia occurs as a large metapopulationconsisting of small local populations with fastturnover, whereas in southern France thespecies has a more continuous populationstructure. In the experiments, we compared theperformance of crosses between full sibs,crosses between members of different familieswithin populations, and crosses betweenindividuals from different populations. Theseexperiments were replicated using insects fromtwo different regions, Finland and southernFrance, between which the frequency of naturalinbreeding should differ substantially becauseof differing population structure. In Finnishbutterflies, the rate of successful mating waslower among insects derived from small thanfrom large natural populations, probablyreflecting the effect of past inbreedinghistory. Mating between full sibs lowered egghatching rate in all experiments. Thisreduction of egg hatching rate was more severeamong French butterflies with a more continuouspopulation structure than among Finnishbutterflies with small naturally fragmentedpopulations and with a history of repeatedrounds of inbreeding in the past. This resultsuggests that recurrent inbreeding has led topartial purging of deleterious recessives fromthe Finnish metapopulation. Nonetheless,substantial genetic load still remains in thismetapopulation, and we discuss possible reasonswhy this should be the case.  相似文献   

10.
Habitat fragmentation commonly causes genetic problems and reduced fitness when populations become small. Stocking small populations with individuals from other populations may enrich genetic variation and alleviate inbreeding, but such artificial gene flow is not commonly used in conservation owing to potential outbreeding depression. We addressed the role of long-term population size, genetic distance between populations and test environment for the performance of two generations of offspring from between-population crosses of the locally rare plant Ranunculus reptans L. Interpopulation outbreeding positively affected an aggregate measure of fitness, and the fitness superiority of interpopulation hybrids was maintained in the second offspring (F2) generation. Small populations benefited more strongly from interpopulation outbreeding. Genetic distance between crossed populations in neutral markers or quantitative characters was not important. These results were consistent under near-natural competition-free and competitive conditions. We conclude that the benefits of interpopulation outbreeding are likely to outweigh potential drawbacks, especially for populations that suffer from inbreeding.  相似文献   

11.
Many rare species are threatened by habitat fragmentation; however, less is known about effects of fragmentation on common species, despite their potential role in ecosystem productivity and functioning. We identified key factors and processes influencing gene flow in a large population of Primula elatior, a common distylous perennial herb, at an early stage of the fragmentation process, i.e., when fragmentation is taking place. Using 19 allozyme loci, we investigated genetic variation and fine-scale spatial genetic structure (SGS) at seedling and adult life stages in relation to fragmentation history (recent bottlenecks), selection, clonal propagation, sexual reproduction (seed and pollen dispersal, distyly), and patchy structure (patch size, plant density, and morph ratio). The main factors contributing to the strong SGS are seed and (to a lesser extent) pollen dispersal, through a spatial Wahlund effect and biparental inbreeding. Significant differences in allele frequencies between seedlings and adults indicate a temporal Wahlund effect. Patch plant density and biased morph ratio also affect the genetic patterns. Our results show that if P. elatior populations evolve into patchworks of small, isolated remnants, genetic erosion, reduced gene flow, and increased inbreeding can be expected, suggesting that such common plant species might require large population sizes to remain viable.  相似文献   

12.
Fragmentation is generally considered to have negative impacts on widespread outbreeders but impacts on gene flow and diversity in patchy, naturally rare, self-compatible plant species remain unclear. We investigated diversity, gene flow and contemporary pollen-mediated gene immigration in the rare, narrowly distributed endemic shrub Calothamnus quadrifidus ssp. teretifolius. This taxon occurs in an internationally recognized biodiversity hotspot subjected to recent human-induced fragmentation and the condition of the remnants ranges from intact to highly degraded. Using microsatellites, we found that inbreeding, historically low gene flow and significant population differentiation have characterized the genetic system of C. quadrifidus ssp. teretifolius. Inbreeding arises from self-pollination, a small amount of biparental inbreeding and significant correlation of outcross paternity but fecundity was high suggesting populations might have purged their lethals. Paternity analyses show that pollinators can move pollen over degraded and intact habitat but populations in both intact and degraded remnants had few pollen parents per seed parent and low pollen immigration. Genetic diversity did not differ significantly between intact and degraded remnants but there were signs of genetic bottlenecks and reduced diversity in some degraded remnants. Overall, our study suggests human-induced fragmentation has not significantly changed the mating system, or pollen immigration to, remnant populations and therefore genetic connectivity need not be the highest conservation priority. Rather, for rare species adapted to higher levels of inbreeding, conservation efforts may be best directed to managing intact habitats and ecosystem processes.  相似文献   

13.
Kincaid’s lupine (Lupinus oreganus), a threatened perennial legume of western Oregon grasslands, is composed of small, fragmented populations that have consistently low natural seed set, suggesting they may have accumulated high enough levels of genetic load to be candidates for genetic rescue. We used simple sequence repeat (SSR) loci, both nuclear DNA and chloroplast DNA, to screen populations throughout the species’ range for evidence of severe inbreeding and recent genetic bottlenecks due to habitat fragmentation. After genotyping about 40% of the known populations, only one of 24 populations had strong statistical evidence for a recent genetic bottleneck (H e > H eq). Both mean nSSR fixation coefficients and genetic diversity did not statistically differ between very small, small, medium, and large lupine population size classes. Within population chloroplast DNA haplotype number was high for an animal pollinated species, ≈4.2 haplotypes/population, and within population haplotype diversity was also relatively evenly distributed. Within population patterns of nSSR and cpSSR genetic diversity suggest that genetic diversity has not been lost over the last century of habitat fragmentation. With genet lifespan thought to exceed 100 years, overlap of several to many generations, and substantial reductions in seed set from inbreeding depression that shifts cohort composition towards those generated by outcrossing events, Kincaid’s lupine is likely maintain the currently high levels of within population genetic diversity. The case of Kincaid’s lupine provides an example of how the assumptions of severe inbreeding depression with small population size and habitat fragmentation can be inaccurate.  相似文献   

14.
Dornier A  Cheptou PO 《Oecologia》2012,169(3):703-712
Local populations are subject to recurrent extinctions, and small populations are particularly prone to extinction. Both demographic (stochasticity and the Allee effect) and genetic factors (drift load and inbreeding depression) potentially affect extinction. In fragmented populations, regular dispersal may boost population sizes (demographic rescue effect) or/and reduce the local inbreeding level and genetic drift (genetic rescue effect), which can affect extinction risks. We studied extinction processes in highly fragmented populations of the common species Crepis sancta (Asteraceae) in urban habitats exhibiting a rapid turnover of patches. A four-year demographic monitoring survey and microsatellite genotyping of individuals allowed us to study the determinants of extinction. We documented a low genetic structure and an absence of inbreeding (estimated by multilocus heterozygosity), which suggest that genetic factors were not a major cause of patch extinction. On the contrary, local population size was the main factor in extinction, whereas connectivity was shown to decrease patch extinction, which we interpreted as a demographic rescue effect that was likely due to better pollination services for reproduction. This coupling of demographic and genetic tools highlighted the importance of dispersal in local patch extinctions of small fragmented populations connected by gene flow.  相似文献   

15.
Many species require captive breeding to ensuretheir survival. The eventual aim of suchprograms is usually to reintroduce the speciesinto the wild. Populations in captivitydeteriorate due to inbreeding depression, lossof genetic diversity, accumulation of newdeleterious mutations and genetic adaptationsto captivity that are deleterious in the wild.However, there is little evidence on themagnitude of these problems. We evaluatedchanges in reproductive fitness in populationsof Drosophila maintained under benigncaptive conditions for 50 generations witheffective population sizes of 500 (2replicates), 250 (3), 100 (4), 50 (6) and 25(8). At generation 50, fitness in the benigncaptive conditions was reduced in smallpopulations due to inbreeding depression andincreased in some of the large populations dueto modest genetic adaptation. When thepopulations were moved to `wild' conditions,all 23 populations showed a marked decline(64–86%percnt;) in reproductive fitness compared tocontrols. Reproductive fitness showed acurvilinear relationship with population size,the largest and smallest population sizetreatments being the worst. Genetic analysesindicated that inbreeding depression andgenetic adaptation were responsible for thegenetic deterioration in `wild' fitness.Consequently, genetic deterioration incaptivity is likely to be a major problem whenlong-term captive bred populations ofendangered species are returned to the wild. Aregime involving fragmentation of captivepopulations of endangered species is suggestedto minimize the problems.  相似文献   

16.
陈小勇 《生态学报》2000,20(5):884-892
生境片断化是指大而连续的生境变成空间隔离的小种群的现象。生境片断化对植物种群遗传效应包括生境片断化过程中的取样效应及其后的小种群效应(遗传漂变、近交等)。理论研究表明,生境片断化后,植物种群的遗传变异程度将降低,而残留的小种群间的遗传分化程度将升高。然而对一些植物的研究表明,生境片断化对植物种群的遗传效应要受其他一些因素的影响,如世代长度、片断化时间、片断种群的大小、基因流的改变等。最后,针对生境  相似文献   

17.
Willi Y  Fischer M 《Heredity》2005,95(6):437-443
Small populations of our study species Ranunculus reptans have reduced fitness because of inbreeding, genetic load, and reduced mate availability; that is, they suffer from a three-fold genetic Allee effect. Here, we investigate how the effect of interpopulation outbreeding on offspring fitness depends on population size. We performed within- and between-population crosses with plants originating from 15 populations, and measured offspring performance in a common environment. Interpopulation outbreeding led to an increase in population means of clonal performance, which was defined as the number of rooted offspring rosettes produced per maternal ovule. This fitness gain mainly occurred at the life stage of seed set. It was especially pronounced for populations with a long-term history of small size inferred from their low genetic diversity, estimated from eight allozyme loci. We conclude that in a self-incompatible plant such as R. reptans, interpopulation outbreeding can lead to an immediate genetic rescue effect due to increased cross-compatibility and heterosis, and that this rescue effect is increased as population size decreases.  相似文献   

18.
Genetic diversity generally underpins population resilience and persistence. Reductions in population size and absence of gene flow can lead to reductions in genetic diversity, reproductive fitness, and a limited ability to adapt to environmental change increasing the risk of extinction. Island populations are typically small and isolated, and as a result, inbreeding and reduced genetic diversity elevate their extinction risk. Two island populations of the platypus, Ornithorhynchus anatinus, exist; a naturally occurring population on King Island in Bass Strait and a recently introduced population on Kangaroo Island off the coast of South Australia. Here we assessed the genetic diversity within these two island populations and contrasted these patterns with genetic diversity estimates in areas from which the populations are likely to have been founded. On Kangaroo Island, we also modeled live capture data to determine estimates of population size. Levels of genetic diversity in King Island platypuses are perilously low, with eight of 13 microsatellite loci fixed, likely reflecting their small population size and prolonged isolation. Estimates of heterozygosity detected by microsatellites (H(E)= 0.032) are among the lowest level of genetic diversity recorded by this method in a naturally outbreeding vertebrate population. In contrast, estimates of genetic diversity on Kangaroo Island are somewhat higher. However, estimates of small population size and the limited founders combined with genetic isolation are likely to lead to further losses of genetic diversity through time for the Kangaroo Island platypus population. Implications for the future of these and similarly isolated or genetically depauperate populations are discussed.  相似文献   

19.
The importance of genetic drift in shaping patterns of adaptive genetic variation in nature is poorly known. Genetic drift should drive partially recessive deleterious mutations to high frequency, and inter‐population crosses may therefore exhibit heterosis (increased fitness relative to intra‐population crosses). Low genetic diversity and greater genetic distance between populations should increase the magnitude of heterosis. Moreover, drift and selection should remove strongly deleterious recessive alleles from individual populations, resulting in reduced inbreeding depression. To estimate heterosis, we crossed 90 independent line pairs of Arabidopsis thaliana from 15 pairs of natural populations sampled across Fennoscandia and crossed an additional 41 line pairs from a subset of four of these populations to estimate inbreeding depression. We measured lifetime fitness of crosses relative to parents in a large outdoor common garden (8,448 plants in total) in central Sweden. To examine the effects of genetic diversity and genetic distance on heterosis, we genotyped parental lines for 869 SNPs. Overall, genetic variation within populations was low (median expected heterozygosity = 0.02), and genetic differentiation was high (median FST = 0.82). Crosses between 10 of 15 population pairs exhibited significant heterosis, with magnitudes of heterosis as high as 117%. We found no significant inbreeding depression, suggesting that the observed heterosis is due to fixation of mildly deleterious alleles within populations. Widespread and substantial heterosis indicates an important role for drift in shaping genetic variation, but there was no significant relationship between fitness of crosses relative to parents and genetic diversity or genetic distance between populations.  相似文献   

20.
Habitat fragmentation can restrict geneflow, reduce neighbourhood effective population size, and increase genetic drift and inbreeding in small, isolated habitat remnants. The extent to which habitat fragmentation leads to population fragmentation, however, differs among landscapes and taxa. Commonly, researchers use information on the current status of a species to predict population effects of habitat fragmentation. Such methods, however, do not convey information on species-specific responses to fragmentation. Here, we compare levels of past population differentiation, estimated from microsatellite genotypes, with contemporary dispersal rates, estimated from multi-strata capture-recapture models, to infer changes in mobility over time in seven sympatric, forest-dependent bird species of a Kenyan cloud forest archipelago. Overall, populations of sedentary species were more strongly differentiated and clustered compared to those of vagile ones, while geographical patterning suggested an important role of landscape structure in shaping genetic variation. However, five of seven species with broadly similar levels of genetic differentiation nevertheless differed substantially in their current dispersal rates. We conclude that post-fragmentation levels of vagility, without reference to past population connectivity, may not be the best predictor of how forest fragmentation affects the life history of forest-dependent species. As effective conservation strategies often hinge on accurate prediction of shifts in ecological and genetic relationships among populations, conservation practices based solely upon current population abundances or movements may, in the long term, prove to be inadequate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号