首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.
Binding of thrombopoietin (TPO) to the cMpl receptor on human platelets potentiates aggregation induced by a number of agonists, including ADP. In this work, we found that TPO was able to restore ADP-induced platelet aggregation upon blockade of the G(q)-coupled P2Y1 purinergic receptor but not upon inhibition of the G(i)-coupled P2Y12 receptor. Moreover, TPO triggered platelet aggregation upon co-stimulation of G(z) by epinephrine but not upon co-stimulation of G(q) by the thromboxane analogue U46619. Platelet aggregation induced by TPO and G(i) stimulation was biphasic, and cyclooxygenase inhibitors prevented the second but not the first phase. In contrast to ADP, TPO was unable to induce integrin alpha(IIb)beta(3) activation, as evaluated by binding of both fibrinogen and PAC-1 monoclonal antibody. However, ADP-induced activation of integrin alpha(IIb)beta(3) was blocked by antagonists of the G(q)-coupled P2Y1 receptor but was completely restored by the simultaneous co-stimulation of cMpl receptor by TPO. Inside-out activation of integrin alpha(IIb)beta(3) induced by TPO and G(i) stimulation occurred independently of thromboxane A(2) production and was not mediated by protein kinase C, MAP kinases, or Rho-dependent kinase. Importantly, TPO and G(i) activation of integrin alpha(IIb)beta(3) was suppressed by wortmannin and Ly294002, suggesting a critical regulation by phosphatidylinositol 3-kinase. We found that TPO did not activate phospholipase C in human platelets and was unable to restore ADP-induced phospholipase C activation upon blockade of the G(q)-coupled P2Y1 receptor. TPO induced a rapid and sustained activation of the small GTPase Rap1B through a pathway dependent on phosphatidylinositol 3-kinase. In ADP-stimulated platelets, Rap1B activation was reduced, although not abolished, upon blockade of the P2Y1 receptor. However, accumulation of GTP-bound Rap1B in platelets activated by co-stimulation of cMpl and P2Y12 receptor was identical to that induced by the simultaneous ligation of P2Y1 and P2Y12 receptor by ADP. These results indicate that TPO can integrate G(i), but not G(q), stimulation and can efficiently support integrin alpha(IIb)beta(3) activation platelet aggregation by an alternative signaling pathway independent of phospholipase C but involving the phosphatidylinositol 3-kinase and the small GTPase Rap1B.  相似文献   

2.
Stimulation of human platelets by cross-linking of the low affinity receptor for immunoglobulin, FcgammaRIIA, caused the rapid activation of the small GTPase Rap1B, as monitored by accumulation of the GTP-bound form of the protein. This process was totally dependent on the action of secreted ADP since it was completely prevented in the presence of either apyrase or creatine phosphate and creatine phosphokinase. Dose-dependent experiments revealed that the inhibitory effect of ADP scavengers was not related to the reduced increase of cytosolic Ca(2+) concentration in stimulated platelets. Activation of Rap1B induced by clustering of FcgammaRIIA was totally suppressed by AR-C69931MX, a specific antagonist of the G(i)-coupled ADP receptor P2Y12, but was not affected by blockade of the G(q)-coupled receptor, P2Y1. Similarly, direct stimulation of platelets with ADP induced the rapid activation of Rap1B. Pharmacological blockade of the P2Y1 receptor totally prevented ADP-induced Ca(2+) mobilization but did not affect activation of Rap1B. By contrast, prevention of ADP binding to the P2Y12 receptor totally suppressed activation of Rap1B without affecting Ca(2+) signaling. In platelets stimulated by cross-linking of FcgammaRIIA, inhibition of Rap1B activation by ADP scavengers could be overcome by the simultaneous recruitment of the G(i)-coupled alpha(2A)-adrenergic receptor by epinephrine. By contrast, serotonin, which binds to a G(q)-coupled receptor, could not restore activation of Rap1B. When tested alone, epinephrine was found to be able to induce GTP binding to Rap1B, whereas serotonin produced only a slight effect. Finally, activation of Rap1B induced by stimulation of the G(q)-coupled thromboxane A(2) receptor by was completely inhibited by ADP scavengers under conditions in which intracellular Ca(2+) mobilization was unaffected. Inhibition of -induced Rap1B activation was also observed upon blockade of the P2Y12 but not of the P2Y1 receptor for ADP. These results demonstrate that stimulation of a G(i)-dependent signaling pathway by either ADP of epinephrine is necessary and sufficient to activate the small GTPase Rap1B.  相似文献   

3.
The small GTP-binding protein Rap1B is activated in human platelets upon stimulation of a G(i)-dependent signaling pathway. In this work, we found that inhibition of platelet adenylyl cyclase by dideoxyadenosine or SQ22536 did not cause activation of Rap1B and did not restore Rap1B activation in platelets stimulated by cross-linking of Fcgamma receptor IIA (FcgammaRIIA) in the presence of ADP scavengers. Moreover, elevation of the intracellular cAMP concentration did not impair the G(i)-dependent activation of Rap1B. Two unrelated inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and LY294002, totally prevented Rap1B activation in platelets stimulated by cross-linking of FcgammaRIIA, by stimulation of the P2Y(12) receptor for ADP, or by epinephrine. However, in platelets from PI3Kgamma-deficient mice, both ADP and epinephrine were still able to normally stimulate Rap1B activation through a PI3K-dependent mechanism, suggesting the involvement of a different isoform of the enzyme. Moreover, the lack of PI3Kgamma did not prevent the ability of epinephrine to potentiate platelet aggregation through a G(i)-dependent pathway. The inhibitory effect of wortmannin on Rap1B activation was overcome by addition of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), but not PtdIns(3,4)P(2), although both lipids were found to support phosphorylation of Akt. Moreover, PtdIns(3,4,5)P(3) was able to relieve the inhibitory effect of apyrase on FcgammaRIIA-mediated platelet aggregation. We conclude that stimulation of a G(i)-dependent signaling pathway causes activation of the small GTPase Rap1B through the action of the PI3K product PtdIns(3,4,5)P(3), but not PtdIns(3,4)P(2), and that this process may contribute to potentiation of platelet aggregation.  相似文献   

4.
Stimulation of G(q)-coupled receptors activates phospholipase C and is supposed to promote both intracellular Ca(2+) mobilization and protein kinase C (PKC) activation. We found that ADP-induced phosphorylation of pleckstrin, the main platelet substrate for PKC, was completely inhibited not only by an antagonist of the G(q)-coupled P2Y1 receptor but also upon blockade of the G(i)-coupled P2Y12 receptor. The role of G(i) on PKC regulation required stimulation of phosphatidylinositol 3-kinase rather than inhibition of adenylyl cyclase. P2Y12 antagonists also inhibited pleckstrin phosphorylation, Rap1b activation, and platelet aggregation induced upon G(q) stimulation by the thromboxane A(2) analogue U46619. Importantly, activation of phospholipase C and intracellular Ca(2+) mobilization occurred normally. Phorbol 12-myristate 13-acetate overcame the inhibitory effect of P2Y12 receptor blockade on PKC activation but not on Rap1b activation and platelet aggregation. By contrast, inhibition of diacylglycerol kinase restored both PKC and Rap1b activity and caused platelet aggregation. Stimulation of P2Y12 receptor or direct inhibition of diacylglycerol kinase potentiated the effect of membrane-permeable sn-1,2-dioctanoylglycerol on platelet aggregation and pleckstrin phosphorylation, in association with inhibition of its phosphorylation to phosphatidic acid. These results reveal a novel and unexpected role of the G(i)-coupled P2Y12 receptor in the regulation of diacylglycerol-mediated events in activated platelets.  相似文献   

5.
We have previously shown that ADP-induced thromboxane generation in platelets requires signalling events from the G(q)-coupled P2Y1 receptor (platelet ADP receptor coupled to stimulation of phospholipase C) and the G(i)-coupled P2Y12 receptor (platelet ADP receptor coupled to inhibition of adenylate cyclase) in addition to outside-in signalling. While it is also known that extracellular calcium negatively regulates ADP-induced thromboxane A2 generation, the underlying mechanism remains unclear. In the present study we sought to elucidate the signalling mechanisms and regulation by extracellular calcium of ADP-induced thromboxane A2 generation in platelets. ERK (extracllular-signal-regulated kinase) 2 activation occurred when outside-in signalling was blocked, indicating that it is a downstream event from the P2Y receptors. However, blockade of either P2Y1 or the P2Y12 receptors with corresponding antagonists completely abolished ERK phosphorylation, indicating that both P2Y receptors are required for ADP-induced ERK activation. Inhibitors of Src family kinases or the ERK upstream kinase MEK [MAPK (mitogen-activated protein kinase)/ERK kinase] abrogated ADP-induced ERK phosphorylation and thromboxane A2 generation. Finally ADP- or G(i)+G(z)-induced ERK phosphorylation was blocked in the presence of extracellular calcium. The present studies show that ERK2 is activated downstream of P2Y receptors through a complex mechanism involving Src kinases and this plays an important role in ADP-induced thromboxane A2 generation. We also conclude that extracellular calcium blocks ADP-induced thromboxane A2 generation through the inhibition of ERK activation.  相似文献   

6.
Phosphoinositide (PI) 3-kinases play an important role in regulating the adhesive function of a variety of cell types through affinity modulation of integrins. Two type I PI 3-kinase isoforms (p110 beta and p110 gamma) have been implicated in G(i)-dependent integrin alpha(IIb)beta(3) regulation in platelets, however, the mechanisms by which they coordinate their signaling function remains unknown. By employing isoform-selective PI 3-kinase inhibitors and knock-out mouse models we have identified a unique mechanism of PI 3-kinase signaling co-operativity in platelets. We demonstrate that p110 beta is primarily responsible for G(i)-dependent phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)) production in ADP-stimulated platelets and is linked to the activation of Rap1b and AKT. In contrast, defective integrin alpha(IIb)beta(3) activation in p110 gamma(-/-) platelets was not associated with alterations in the levels of PI(3,4)P(2) or active Rap1b/AKT. Analysis of the effects of active site pharmacological inhibitors confirmed that p110 gamma principally regulated integrin alpha(IIb)beta(3) activation through a non-catalytic signaling mechanism. Inhibition of the kinase function of PI 3-kinases, combined with deletion of p110 gamma, led to a major reduction in integrin alpha(IIb)beta(3) activation, resulting in a profound defect in platelet aggregation, hemostatic plug formation, and arterial thrombosis. These studies demonstrate a kinase-independent signaling function for p110 gamma in platelets. Moreover, they demonstrate that the combined catalytic and non-catalytic signaling function of p110 beta and p110 gamma is critical for P2Y(12)/G(i)-dependent integrin alpha(IIb)beta(3) regulation. These findings have potentially important implications for the rationale design of novel antiplatelet therapies targeting PI 3-kinase signaling pathways.  相似文献   

7.
Arrestins can facilitate desensitization or signaling by G protein-coupled receptors (GPCR) in many cells, but their roles in platelets remain uncharacterized. Because of recent reports that arrestins can serve as scaffolds to recruit phosphatidylinositol-3 kinases (PI3K)s to GPCRs, we sought to determine whether arrestins regulate PI3K-dependent Akt signaling in platelets, with consequences for thrombosis. Co-immunoprecipitation experiments demonstrate that arrestin-2 associates with p85 PI3Kα/β subunits in thrombin-stimulated platelets, but not resting cells. The association is inhibited by inhibitors of P2Y12 and Src family kinases (SFKs). The function of arrestin-2 in platelets is agonist-specific, as PAR4-dependent Akt phosphorylation and fibrinogen binding were reduced in arrestin-2 knock-out platelets compared with WT controls, but ADP-stimulated signaling to Akt and fibrinogen binding were unaffected. ADP receptors regulate arrestin recruitment to PAR4, because co-immunoprecipitates of arrestin-2 with PAR4 are disrupted by inhibitors of P2Y1 or P2Y12. P2Y1 may regulate arrestin-2 recruitment to PAR4 through protein kinase C (PKC) activation, whereas P2Y12 directly interacts with PAR4 and therefore, may help to recruit arrestin-2 to PAR4. Finally, arrestin2(-/-) mice are less sensitive to ferric chloride-induced thrombosis than WT mice, suggesting that arrestin-2 can regulate thrombus formation in vivo. In conclusion, arrestin-2 regulates PAR4-dependent signaling pathways, but not responses to ADP alone, and contributes to thrombus formation in vivo.  相似文献   

8.
ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999   总被引:15,自引:0,他引:15  
P2Y receptors are a class of G protein-coupled receptors activated primarily by ATP, UTP, and UDP. Five mammalian P2Y receptors have been cloned so far including P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11. P2Y1, P2Y2, and P2Y6 couple to the activation of phospholipase C, whereas P2Y4 and P2Y11 couple to the activation of both phospholipase C and the adenylyl cyclase pathways. Additional ADP receptors linked to Galpha(i) have been described but have not yet been cloned. SP1999 is an orphan G protein-coupled receptor, which is highly expressed in brain, spinal cord, and blood platelets. In the present study, we demonstrate that SP1999 is a Galpha(i)-coupled receptor that is potently activated by ADP. In an effort to identify ligands for SP1999, fractionated rat spinal cord extracts were assayed for Ca(2+) mobilization activity against Chinese hamster ovary cells transiently transfected with SP1999 and chimeric Galpha subunits (Galpha(q/i)). A substance that selectively activated SP1999-transfected cells was identified and purified through a series of chromatographic steps. Mass spectral analysis of the purified material definitively identified it as ADP. ADP was subsequently shown to inhibit forskolin-stimulated adenylyl cyclase activity through selective activation of SP1999 with an EC(50) of 60 nM. Other nucleotides were able to activate SP1999 with a rank order of potency 2-MeS-ATP = 2-MeS-ADP > ADP = adenosine 5'-O-2-(thio)diphosphate > 2-Cl-ATP > adenosine 5'-O-(thiotriphosphate). Thus, SP1999 is a novel, Galpha(i)-linked receptor for ADP.  相似文献   

9.
Thromboxane A(2) is a positive feedback lipid mediator produced following platelet activation. The G(q)-coupled thromboxane A(2) receptor subtype, TPalpha, and G(i)-coupled TPbeta subtype have been shown in human platelets. ADP-induced platelet aggregation requires concomitant signaling from two P2 receptor subtypes, P2Y1 and P2T(AC), coupled to G(q) and G(i), respectively. We investigated whether the stable thromboxane A(2) mimetic, (15S)-hydroxy-9, 11-epoxymethanoprosta-5Z,13E-dienoic acid (U46619), also causes platelet aggregation by concomitant signaling through G(q) and G(i), through co-activation of TPalpha and TPbeta receptor subtypes. Here we report that secretion blockade with Ro 31-8220, a protein kinase C inhibitor, completely inhibited U46619-induced, but not ADP- or thrombin-induced, platelet aggregation. Ro 31-8220 had no effect on U46619-induced intracellular calcium mobilization or platelet shape change. Furthermore, U46619-induced intracellular calcium mobilization and shape change were unaffected by A3P5P, a P2Y1 receptor-selective antagonist, and/or cyproheptadine, a 5-hydroxytryptamine subtype 2A receptor antagonist. Either Ro 31-8220 or AR-C66096, a P2T(AC) receptor selective antagonist, abolished U46619-induced inhibition of adenylyl cyclase. In addition, AR-C66096 drastically inhibited U46619-mediated platelet aggregation, which was further inhibited by yohimbine, an alpha(2A)-adrenergic receptor antagonist. Furthermore, inhibition of U46619-induced platelet aggregation by Ro 31-8220 was relieved by activation of the G(i) pathway by selective activation of either the P2T(AC) receptor or the alpha(2A)-adrenergic receptor. We conclude that whereas thromboxane A(2) causes intracellular calcium mobilization and shape change independently, thromboxane A(2)-induced inhibition of adenylyl cyclase and platelet aggregation depends exclusively upon secretion of other agonists that stimulate G(i)-coupled receptors.  相似文献   

10.
Platelets were used to study the activation of Rho and Rac through G-protein-coupled receptors and its regulation by cyclic nucleotides. The thromboxane A(2) (TXA(2)) mimetic rapidly activated both small GTPases independently of integrin alpha(IIb)beta(3) activation., which leads to the activation of G(12)/G(13) and G(q) did not induce Rac activation in G alpha(q)-deficient platelets but was able to activate Rho, to stimulate actin polymerization and phosphatidylinositol 4,5-bisphosphate formation, and to induce shape change. Rac activation by in wild-type platelets could be blocked by chelation of intracellular Ca(2+) and was partially sensitive to apyrase and AR-C69931MX, an antagonist of the G(i)-coupled ADP receptor. Cyclic AMP, which completely blocks platelet function, inhibited the -induced activation of G(q) and G(12)/G(13) as well as of Rac and Rho. In contrast, cGMP, which has no effect on platelet shape change blocked only activation of G(q) and Rac. These data demonstrate that Rho and Rac are differentially regulated through heterotrimeric G-proteins. The G(12)/G(13)-mediated Rho activation is involved in the shape change response, whereas Rac is activated through G(q) and is not required for shape change. Cyclic AMP and cGMP differentially interfere with -induced Rho and Rac activation at least in part by selective effects on the regulation of individual G-proteins through the TXA(2) receptor.  相似文献   

11.
Thrombin activates human platelets through three different membrane receptors, the protease-activated receptors PAR-1 and PAR-4 and the glycoprotein Ib (GPIb)-IX-V complex. We investigated the contribution of these three receptors to thrombin-induced activation of the small GTPase Rap1B. We found that, similarly to thrombin, selective stimulation of either PAR-1 or PAR-4 by specific activating peptides caused accumulation of GTP-bound Rap1B in a dose-dependent manner. By contrast, in PAR-1- and PAR-4-desensitized platelets, thrombin failed to activate Rap1B. Thrombin, PAR-1-, or PAR-4-activating peptides also induced the increase of intracellular Ca(2+) concentration and the release of serotonin in a dose-dependent manner. We found that activation of Rap1B by selected doses of agonists able to elicit comparable intracellular Ca(2+) increase and serotonin release was differently dependent on secreted ADP. In the presence of the ADP scavengers apyrase or phosphocreatine-phosphocreatine kinase, activation of Rap1B induced by stimulation of either PAR-1 or PAR-4 was totally inhibited. By contrast, thrombin-induced activation of Rap1B was only minimally affected by neutralization of secreted ADP. Concomitant stimulation of both PAR-1 and PAR-4 in the presence of ADP scavengers still resulted in a strongly reduced activation of Rap1B. A similar effect was also observed upon blockade of the P2Y12 receptor for ADP, as well as in P2Y12 receptor-deficient human platelets, but not after blockade of the P2Y1 receptor. Activation of Rap1B induced by thrombin was not affected by preincubation of platelets with the anti-GPIbalpha monoclonal antibody AK2 in the absence of ADP scavengers or a P2Y12 antagonist but was totally abolished when secreted ADP was neutralized or after blockade of the P2Y12 receptor. Similarly, cleavage of the extracellular portion of GPIbalpha by the cobra venom mocarhagin totally prevented Rap1B activation induced by thrombin in the presence of apyrase and in P2Y12 receptor-deficient platelets. By contrast, inhibition of MAP kinases or p160ROCK, which have been shown to be activated upon thrombin binding to GPIb-IX-V, did not affect agonist-induced activation of Rap1B in the presence of ADP scavengers. These results indicate that although both PAR-1 and PAR-4 signal Rap1B activation, the ability of thrombin to activate this GTPase independently of secreted ADP involves costimulation of both receptors as well as binding to GPIb-IX-V.  相似文献   

12.
The AMP-activated protein kinase (AMPK) functions as a metabolic sensor that monitors cellular AMP and ATP levels. Platelet-activating factor (PAF) activates endogeneous AMPKalpha1 in Chinese hamster ovary cells expressing the PAF receptor coupled with both G(i) and G(q), but its activity was not inhibited after treatment with islet-activating protein. Norepinephrine and bradykinin also activated AMPKalpha1 in cells expressing the G(q)-coupled alpha(1b)-adrenergic receptor and bradykinin receptor, respectively. Stimulations of the G(i)-coupled alpha(2A)-adrenergic receptor, fMet-Leu-Phe receptor, prostaglandin EP3alpha receptor, and G(s)-coupled beta(2)-adrenergic receptor did not activate AMPKalpha1. AMPKalpha1 thus is activated specifically by stimulation of G(q)-coupled receptors. G(q)-coupled receptors transmit the signal for GLUT4 translocation and glucose uptake through an insulin-independent pathway. However, direct activation of AMPKalpha1 with treatment of 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside did not trigger GLUT4 translocation nor stimulate glucose uptake in our cells. Thus, activation of AMPKalpha1 via G(q) is not sufficient to trigger GLUT4 translocation or stimulate glucose uptake.  相似文献   

13.
The study of the signaling pathways regulating neurite outgrowth in culture is important because of their potential role in neuronal differentiation in vivo. We have previously shown that the G alpha(o/i)-coupled CB1 cannabinoid receptor (CB1R) activates Rap1 to induce neurite outgrowth. G alpha(o/i) also activates the Src-Stat3 pathway. Here, we studied the relationship between the G alpha(o/i)-Rap1 and Src-Stat3 pathways and the role of these signaling pathways in CB1R-mediated neurite outgrowth in Neuro-2A cells. The CB1 agonist HU-210 induced pertussis toxin-sensitive Src and Stat3 phosphorylation. Dominant negative (DN) mutants of Src and Stat3 blocked CB1R-induced neurite outgrowth. Constitutively active Rap 1B and Ral-activated Src and CB1R-induced Src phosphorylation was inhibited by Rap1-DN and Ral-DN, indicating that both Rap1 and Ral mediate downstream signaling from G alpha(o/i) for Src activation. Rap1-activated Ral and Ral-DN blocked Rap-induced Src phosphorylation. G alpha(o)-induced Stat3 activation was blocked by Ral-DN, whereas v-Src-induced Stat3 activation was not inhibited by Ral-DN, indicating that the CB1R, through G alpha(o), mediates the sequential activation of Rap1 to Ral to Src to Stat3 in Neuro-2A cells. Downstream of Src, the CB1R also activated Rac1 and JNK, which enhanced CBR1-mediated Stat3 activation. Rac-DN blocked CB1R-induced activation of JNK. Pharmacological inhibition of JNK blocked Src and CB1R activation of Stat3, indicating that Rac and JNK are also involved in CB1R-mediated neurite outgrowth. Overall, this study demonstrated that G alpha(o/i)-coupled CB1R triggers neurite outgrowth in Neuro-2A through the activation of a signaling network containing two pathways that bifurcate at Src and converge at Stat3.  相似文献   

14.
Platelet activation is a complex process induced by a variety of stimuli, which act in concert to ensure the rapid formation of a platelet plug at places of vascular injury. We show here that fibrillar collagen, which initiates platelet activation at the damaged vessel wall, activates only a small fraction of platelets in suspension directly, whereas the majority of platelets becomes activated by mediators released from collagen-activated platelets. In Galpha(q)-deficient platelets that do not respond with activation of integrin alpha(IIb)beta(3) to a variety of mediators like thromboxane A2 (TXA2), thrombin, or ADP, collagen at high concentrations was able to induce aggregation, an effect that could be blocked by antagonists of the TXA2 or P2Y12 receptors. The activation of TXA2 or P2Y12 receptors alone, which in Galpha(q)-deficient platelets couple to G12/G13 and Gi, respectively, did not induce platelet integrin activation or aggregation. However, concomitant activation of both receptors resulted in irreversible integrin alpha(IIb)beta3-mediated aggregation of Galpha(q)-deficient platelets. Thus, the activation of G12/G13- and Gi-mediated signaling pathways is sufficient to induce integrin alpha(IIb)beta3 activation. Although G(q)-mediated signaling plays an important role in platelet activation, it is not strictly required for the activation of integrin alpha(IIb)beta3. This indicates that the efficient induction of platelet aggregation through G-protein-coupled receptors is an integrated response mediated by various converging G-protein-mediated signaling pathways involving G(q) and G(i) as well as G12/G13.  相似文献   

15.
16.
In transfected cells and non-neuronal tissues many G-protein-coupled receptors activate p44/42 MAP kinase (ERK), a kinase involved in both hippocampal synaptic plasticity and learning and memory. However, it is not clear to what degree these receptors couple to ERK in brain. G(s)-coupled beta-adrenergic receptor activation of ERK in neurons is critical in the regulation of synaptic plasticity in area CA1 of the hippocampus. In addition, alpha(1)- and alpha(2)-adrenergic receptors, present in CA1, could potentially activate ERK. We find that, like the beta-adrenergic receptor, the G(q)-coupled alpha(1)AR activates ERK in adult mouse CA1. However, activation of the G(i/o)-coupled alpha(2)AR does not activate ERK, nor does activation of a homologous G(i/o)-coupled receptor enriched in adult mouse CA1, the 5HT(1A) receptor. In contrast, the nonhomologous G(i/o)-coupled gamma-aminobutyric acid type B receptor does activate ERK in adult mouse CA1. Surprisingly, activation of alpha(2)ARs in CA1 from immature animals where basal phospho-ERK is low induces ERK phosphorylation. These data suggest that although most G-protein-coupled receptor subtypes activate ERK in non-neuronal cells, the coupling of G(i/o) to ERK is tightly regulated in brain.  相似文献   

17.
Activation of GPIIb/IIIa is known to require agonist-induced inside-out signaling through G(q), G(i), and G(z). Although activated by several platelet agonists, including thrombin and thromboxane A(2), the contribution of the G(12/13) signaling pathway to GPIIb/IIIa activation has not been investigated. In this study, we used selective stimulation of G protein pathways to investigate the contribution of G(12/13) activation to platelet fibrinogen receptor activation. YFLLRNP is a PAR-1-specific partial agonist that, at low concentrations (60 microm), selectively activates the G(12/13) signaling cascade resulting in platelet shape change without stimulating the G(q) or G(i) signaling pathways. YFLLRNP-mediated shape change was completely inhibited by the p160(ROCK) inhibitor, Y-27632. At this low concentration, YFLLRNP-mediated G(12/13) signaling caused platelet aggregation and enhanced PAC-1 binding when combined with selective G(i) or G(z) signaling, via selective stimulation of the P2Y(12) receptor or alpha(2A)-adrenergic receptor, respectively. Similar data were obtained when using low dose (10 nm), a thromboxane A(2) mimetic, to activate G(12/13) in the presence of G(i) signaling. These results suggest that selective activation of G(12/13) causes platelet GPIIb/IIIa activation when combined with G(i) signaling. Unlike either G(12/13) or G(i) activation alone, co-activation of both G(12/13) and G(i) resulted in a small increase in intracellular calcium. Chelation of intracellular calcium with dimethyl BAPTA dramatically blocked G(12/13) and G(i)-mediated platelet aggregation. No significant effect on aggregation was seen when using selective inhibitors for p160(ROCK), PKC, or MEKK1. PI 3-kinase inhibition lead to near abolishment of platelet aggregation induced by co-stimulation of G(q) and G(i) pathways, but not by G(12/13) and G(i) pathways. These data demonstrate that co-stimulation of G(12/13) and G(i) pathways is sufficient to activate GPIIb/IIIa in human platelets in a mechanism that involves intracellular calcium, and that PI 3-kinase is an important signaling molecule downstream of G(q) but not downstream of G(12/13) pathway.  相似文献   

18.
The stimulation of platelets by low doses of collagen induces extracellular signal-regulated kinase 2 (ERK2) activation. In this report, we demonstrate that collagen-induced ERK2 activation depends on thromboxane A(2) (TXA(2)) formation and ADP release. The collagen-induced ERK2 activation was inhibited by indomethacin (88%) and by AR-C69931MX (70%), a specific antagonist of P2Y12, a Gi-coupled ADP receptor. AR-C69931MX (10 microM) inhibition was overcome by epinephrine (1 microM), an agonist of the Gi-coupled alpha(2A)-adrenergic receptor, suggesting that the Gi-coupled receptor was necessary for ERK2 activation by collagen. By contrast, MRS 2179 (10 microM), a specific antagonist of P2Y1, a Gq-coupled ADP receptor, did not affect collagen-induced ERK2 activation. Little or no ERK2 activation was observed with ADP alone (10 microM). By contrast, U46619 (10 microM), a stable analog of TXA(2), induced ERK2 activation in an ADP-dependent manner, via the P2Y12 receptor. These results suggest that the Gi-dependent signaling pathway, stimulated by ADP or epinephrine, was not the only pathway required for ERK2 activation by collagen. Costimulation of the specific G(12/13)-coupled TXA(2) receptor with a low dose of U46619 (10 nM) and of Gi- and Gq-coupled ADP receptor (10 microM) induced very low levels of ERK2 activation, similar to those observed with ADP alone, suggesting that G(12/13) is not involved or not sufficient to induce the additional pathway necessary for ERK2 activation. The Gq-coupled TXA(2) receptor was required for ERK2 activation by U46619 (10 microM) and low doses of collagen, clearly showing that a coordinated pathway through both Gq from TXA(2) and Gi from ADP was necessary for ERK2 activation. Finally, we demonstrate that ERK2 activation is involved in collagen-induced aggregation and secretion.  相似文献   

19.
Go L  Mitchell J 《Cellular signalling》2007,19(9):1919-1927
Invertebrate visual iG(q)alpha is homologous to mammalian mG(q)alpha in two of the three domains important for G protein interaction with receptors; the C-terminus and the linker regions that connect the helical and ras-like domains of the alpha subunit. The third receptor-interacting domain, the N-terminus, contains a six amino acid extension MTLESI in mG(q)alpha that is not present in iG(q)alpha. In co-expression studies we assessed the promiscuity and efficacy of receptor coupling to phospholipase C (PLC) by iG(q)alpha, a non-palmitoylated mutant iG(q)alpha(C3,4A), mG(q)alpha and G(15)alpha. The invertebrate G proteins and mG(q)alpha only coupled to G(q)-coupled receptors (m1 muscarinic acetylcholine receptor (mChR1), alpha(1A)-adrenergic receptor (alpha1-AR)) and not to the G(i/s)-coupled receptors (CCR1 receptor, beta2-adrenergic receptor or dopamine D1 receptor) while G(15)alpha coupled to all receptors. iG(q)alpha and iG(q)alpha(C3,4A) both had double the efficacy for PLC activation compared to the mammalian G proteins when co-expressed with mChR1 and alpha1-AR. The increased efficacy of iG(q)alpha compared to mG(q)alpha was also seen downstream of PLC with carbachol stimulation of the mitogen-activated protein kinase, ERK1/2. Addition of the MTLESI extension onto the N-terminus of iG(q)alpha decreased its efficacy by 35% whereas deletion of this sequence from mG(q)alpha increased its efficacy by 60% in the PLC and ERK1/2 assays. iG(q)alpha, iG(q)alpha(C3,4A) and mG(q)alpha all displayed similar receptor-independent AlF(4)(-)activation of PLC and guanosine triphosphate hydrolysis (GTPase) activity. iG(q)alpha, and iG(q)alpha(C3,4A) both had increased receptor-activated guanosine 5'-[gamma-[(35)S]thio]triphosphate ([(35)S]GTPgammaS) binding when compared to mG(q)alpha when co-expressed with the mChR1. These results demonstrate that G(q) protein efficacy is at least partially determined by the presence of the amino-terminal MTLESI extension. Comparison of [(35)S]GTPgammaS binding rates helps explain the increased efficacy of the invertebrate G proteins.  相似文献   

20.
Stimulation of phospholipase C (PLC) by G(q)-coupled receptors such as the M(3) muscarinic acetylcholine receptor (mAChR) is caused by direct activation of PLC-beta enzymes by Galpha(q) proteins. We have recently shown that G(s)-coupled receptors can stimulate PLC-epsilon, apparently via formation of cyclic AMP and activation of the Ras-related GTPase Rap2B. Here we report that PLC stimulation by the M(3) mAChR expressed in HEK-293 cells also involves, in part, similar mechanisms. M(3) mAChR-mediated PLC stimulation and [Ca(2+)](i) increase were reduced by 2',5'-dideoxyadenosine (dd-Ado), a direct adenylyl cyclase inhibitor. On the other hand, overexpression of Galpha(s) or Epac1, a cyclic AMP-regulated guanine nucleotide exchange factor for Rap GTPases, enhanced M(3) mAChR-mediated PLC stimulation. Inactivation of Ras-related GTPases with clostridial toxins suppressed the M(3) mAChR responses. The inhibitory toxin effects were mimicked by expression of inactive Rap2B, but not of other inactive GTPases (Rac1, Ras, RalA, Rap1A, and Rap2A). Activation of the M(3) mAChR induced GTP loading of Rap2B, an effect strongly enhanced by overexpression of Galpha(s) and inhibited by dd-Ado. Overexpression of PLC-epsilon and PLC-beta1, but not PLC-gamma1 or PLC-delta1, enhanced M(3) mAChR-mediated PLC stimulation and [Ca(2+)](i) increase. In contrast, expression of a catalytically inactive PLC-epsilon mutant reduced PLC stimulation by the M(3) mAChR and abrogated the potentiating effect of Galpha(s). In conclusion, our findings suggest that PLC stimulation by the M(3) mAChR is a composite action of PLC-beta1 stimulation by Galpha(q) and stimulation of PLC-epsilon apparently mediated by G(s)-dependent cyclic AMP formation and subsequent activation of Rap2B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号