首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
The tropharia of the dipsocoromorphan bugs, Cryptostemma alienum and Cryptostemma carpaticum (Heteroptera : Dipsocoridae) are composed of 30–50 mononucleate nurse cells that are connected with centrally located trophic cores by means of broad cytoplasmic strands. The anteriormost nurse cells are markedly smaller and often reveal signs of degeneration. The trophic core is surrounded and penetrated by elaborate F-actin meshwork. Arrested oocytes and prefollicular cells are localized at the base of the tropharium. Anagenesis of heteropteran ovarioles is discussed in relation to the findings presented.  相似文献   

2.
The structure of ovaries has been analysed in advanced aphids only. In this paper we report the results of ultrastructural studies on the ovarioles of Adelges laricis, a representative of the primitive aphid family, Adelgidae. The ovaries of the studied species are composed of five telotrophic‐meroistic ovarioles that are subdivided into a terminal filament, tropharium (= trophic chamber) and vitellarium. The tropharium houses trophocytes (= nurse cells) and arrested oocytes. The vitellarium consists of one or two ovarian follicles. The total number of germ cells (trophocytes + oocytes) in the ovarioles analysed varies from 50 to 92 and is substantially higher than in previously studied aphids. The centre of the tropharium is occupied by a cell‐free region, termed a trophic core, which is connected both with trophocytes and oocytes. Trophocytes are connected to the core by means of cytoplasmic strands, whereas oocytes by nutritive cords. Both trophic core and nutritive cords are filled with parallel arranged microtubules. In the light of obtained results the anagenesis of hemipteran ovaries is discussed.  相似文献   

3.
Telotrophic ovarioles of scale insects are subdivided into tropharia (=trophic chambers) and vitellaria that contain single developing oocytes. Tropharium encloses trophocytes (=nurse cells) and arrested oocytes. The central area of the tropharium, termed the trophic core, is devoid of cells. Both trophocytes and oocytes are connected to the trophic core: trophocytes by cytoplasmic processes, oocytes by means of nutritive cords. The trophic core, processes and nutritive cords are filled with bundles of microtubules. The trophocytes contain large lobated nuclei with giant nucleoli. Fluorescent labelling with DAPI has shown that trophocyte nuclei are characterized by high contents of DNA. In the cortical cytoplasm of trophocytes, numerous microfilaments are present. The developing oocyte is surrounded by a simple follicular epithelium. The cortical cytoplasm of follicular cells contains numerous microtubules and microfilaments.  相似文献   

4.
The paired, spindle-shaped ovaries of the second instar of the Polish cochineal, Porphyrophora polonica (L.) (Hemiptera: Coccinea) are filled with cystocytes that are arranged into rosettes. In the centre of each rosette, there is a polyfusome. During the third instar, cystocytes differentiate into oocytes and trophocytes (nurse cells) and ovarioles are formed. Ovaries of adult females are composed of about 300 ovarioles of the telotrophic type. Each of them is subdivided into a tropharium (trophic chamber) and vitellarium. The tropharium consists of trophocytes and arrested oocytes that may develop. The number of germ cells in the trophic chambers varies from 11 to 18 even between the ovarioles of the same ovary. The obtained results seem to confirm the concept of a monophyletic origin of the primitive scale insects (Archaeococcoidea).  相似文献   

5.
Szklarzewicz, T., Kalandyk‐Kolodziejczyk, M., Kot, M. and Michalik, A. 2011. Ovary structure and transovarial transmission of endosymbiotic microorganisms in Marchalina hellenica (Insecta, Hemiptera, Coccomorpha: Marchalinidae). —Acta Zoologica (Stockholm) 00 :1–9. The paired ovaries of Marchalina hellenica are composed of about 200 ovarioles of telotrophic type. In each ovariole, a trophic chamber, vitellarium and ovariolar stalk can be distinguished. The tropharia comprise trophocytes and early previtellogenic oocytes (termed arrested oocytes) or trophocytes only. The arrested oocytes are not capable of further development. In the vitellaria, single oocytes develop that are connected to the tropharium by means of broad nutritive cords. The number of germ cells (trophocytes and oocytes) constituting ovarioles is not constant and may range between 25 and 32. Numerous endosymbiotic bacteria occur in the cytoplasm of trophocytes. The endosymbionts are transported via nutritive cords to the developing oocyte. The obtained results are discussed in a phylogenetic context.  相似文献   

6.
Ovaries of phylloxerids consist of short telotrophic ovarioles. Ovaries of wingless morphs contain four ovarioles whereas those of winged morphs contain one or two ovarioles. The individual ovariole of the adult female is differentiated into a terminal filament, trophic chamber (tropharium), vitellarium and short ovariole stalk (pedicel). The number of germ cells constituting ovarioles is not stable and ranges between 49 and 64. The tropharia enclose individual trophocytes and arrested oocytes. The vitellaria contain usually two oocytes, which develop through three stages: previtellogenesis, vitellogenesis and choriogenesis. Endosymbiotic microorganisms do not occur in the germ cells. In the light of the obtained results, the phylogenetic relationships between aphid families are discussed.  相似文献   

7.
Ovaries of Palaeocoocus fuscipennis are composed of about 100 telotrophic ovarioles that are devoid of terminal filaments. In the ovariole a tropharium ( = trophic chamber) and vitellarium can be distinguished. The tropharium contains 7 trophocytes. A single oocyte develops in the vitellarium. The oocyte is surrounded by follicular cells that do not undergo diversification into subpopulations. The obtained results are discussed in a phylogenetic context.  相似文献   

8.
Ovary organization in representatives of two families of Fulgoromorpha, Cixiidae (Cixius nervosus) and Delphacidae (Javesella pellucida and Conomelus anceps), was examined by light and transmission electron microscopy. Ovaries of studied fulgoromorphans consist of telotrophic ovarioles. From apex to base individual ovarioles have four well defined regions: a terminal filament, tropharium (trophic chamber), vitellarium and pedicel (ovariolar stalk). Tropharia are not differentiated into distinct zones and consist of syncytial lobes containing multiple trophocyte nuclei embedded in a common cytoplasm. Lobes are radially arranged around a branched, cell-free trophic core. Early previtellogenic (arrested) oocytes and prefollicular cells are located at the base of the tropharium. The vitellarium houses linearly arranged developing oocytes each of which is connected to the trophic core by a broad nutritive cord. Each oocyte is surrounded by a single layer of follicular cells that become binucleate at the beginning of vitellogenesis.  相似文献   

9.
Swiatek P 《Folia biologica》2001,49(3-4):215-224
In developing ovarioles of Anthonomus pomorum (Coleoptera, Polyphaga, Curculionidae) the trophic chambers (tropharia) are relatively large and consist of clusters (clones) of germ cells and various somatic tissues. Each ovariole is enclosed within an outer epithelial sheath (tunica externa). Throughout the pupal phase, the growth of this sheath is accelerated and precedes the development of the rest of the ovariole. As a result, the epithelial sheath proliferates anteriorly and forms an elongated "sleeve" that during the later stages of development becomes gradually filled by the growing tropharium. In the early pupal stage, a few terminal filament cells are observed in contact with the anterior end of the tropharium. These cells are separated from the rest of the trophic chamber by a transverse septum, which maintains continuity with the basal lamina. Beneath the basal lamina there is a layer of inner sheath cells, whereas inside the tropharium there are interstitial cells. These two types of cell differ morphologically in a mature ovary but they retain, until the end of the imago-B stage, a similar ultrastructure testifying to their common origin. At the posterior end of the tropharium, from the imago-B stage on, many young oocytes, surrounded by prefollicular cells, are observed. This is the so-called neck region of the tropharium. Extraction with Triton X-100 detergent showed that in a mature trophic chamber there are only individual microtubules arranged along the projections of interstitial cells. This indicates that the cytoskeleton elements (microfilaments and microtubules) participate only to a very limited extent in the spatial organisation of the tropharium in A. pomorum.  相似文献   

10.
The tropharium of the common shorebug Saldula saltatoria consists of 2 zones: the apical mitotic region and the distal one comprising numerous mononucleate nurse cells. Each individual nurse cell is connected to the centrally located trophic core by a thin cytoplasmic projection referred to as a trophic process. The accumulations of a dense material interpreted as the remnants of intercellular bridge rim are observed associated with the trophic process membrane. In the light of these results the establishment of telotrophic ovarioles in hemipterans is discussed.  相似文献   

11.
The paired ovaries of young larva of the 3rd instar of Orthezia urticae are filled with numerous germ cell clusters that can be regarded as ovariole anlagen. Germ cells (cystocytes) belonging to one cluster form a rosette, in the centre of which a polyfusome occurs. Staining with rhodamine-phalloidin has revealed that polyfusomes contain numerous microfilaments. The number of cystocytes per cluster is not stable and varies considerably. The ovaries of older larva become elongated with numerous young ovarioles protruding into the body cavity. The ovarioles are not subdivided into the tropharium and vitellarium. In this stage germ cells differentiate into oocytes and trophocytes (nurse cells). The ovaries of adult females are composed of about 20 (Newsteadia floccosa) or 30 (O. urticae) ovarioles. Their trophic chambers contain trophocytes and arrested oocytes. In the vitellarium, at the given moment, only one oocyte develops. It has been observed that after maturation of the first egg the arrested oocytes may develop.  相似文献   

12.
Bug ovaries are of the telotrophic meroistic type. Nurse cells are restricted to the anterior tropharium and are in syncytial connection with the oocytes via the acellular trophic core region into which cytoplasmic projections of oocytes and nurse cells open. The origin of intercellular connections in bug ovaries is not well understood. In order to elucidate the cellular processes underlying the emergence of the syncytium, we analysed the development of the ovary of Dysdercus intermedius throughout the five larval instars. Up to the third instar, the germ cell population of an ovariole anlage forms a single, tight rosette. In the center of the rosette, phosphotyrosine containing proteins and f-actin accumulate. This center is filled with fusomal cytoplasm and closely interdigitating cell membranes known as the membrane labyrinth. With the molt to the fourth instar germ cells enhance their mitotic activity considerably. As a rule, germ cells divide asynchronously. Simultaneously, the membrane labyrinth expands and establishes a central column within the growing tropharium. In the fifth instar the membrane labyrinth retracts to an apical position, where it is maintained even in ovarioles of adult females. The former membrane labyrinth in middle and posterior regions of the tropharium is replaced by the central core to which nurse cells and oocytes are syncytially connected. Germ cells in the most anterior part of the tropharium, i.e. those in close proximity to the membrane labyrinth remain proliferative. The posterior-most germ cells enter meiosis and become oocytes. The majority of the ovarioles' germ cells, located in between these two populations, endopolyploidize and function as nurse cells. We conclude that the extensive multiplication of germ cells and their syncytial assembly during larval development is achieved by incomplete cytokineses followed by massive membrane production. Membranes are degraded as soon as the trophic core develops. For comparative reasons, we also undertook a cursory examination of early germ cell development in Dysdercus intermedius males. All results were compatible with the known basic patterns of early insect spermatogenesis. Germ cells run through mitotic and meiotic divisions in synchronous clusters emerging from incomplete cytokineses. During the division phase, the germ cells of an individual cluster are connected by a polyfusome rich in f-actin.  相似文献   

13.
The ovaries of female lac insects, Kerria chinensis Mahd (Sternorrhyncha: Coccoidea: Kerridae), at the last nymphal stage are composed of several balloon‐like clusters of cystocytes with different sizes. Each cluster consists of several clusters of cystocytes arranging in rosette forms. At the adult stage, the pair of ovaries consists of about 600 ovarioles of the telotrophic‐meroistic type. An unusual feature when considering most scale insects is that the lateral oviducts are highly branched, each with a number of short ovarioles. Each ovariole is subdivided into an anterior trophic chamber (tropharium) containing six or seven large trophocytes and a posterior vitellarium harbouring one oocyte which is connected with the trophic chamber via a nutritive cord. No terminal filament is present. Late‐stage adult females show synchronized development of the ovarioles, while in undernourished females, a small proportion of ovarioles proceed to maturity.  相似文献   

14.
Histochemical and electron microscopic methods have revealed that there are four types of cell inclusions in the late vitellogenic oocytes of Oncopeltus. (a) Type 1 is a vacuole which seems to be contributed from the tropharium via the nutritive tubes. It is suggested that this type consists partly at least of nucleolus-like material (ribonucleoprotein) emitted from the nuclei of the Zone III trophocytes. (b) Type 2 is lipid yolk which in early stage oocytes seems to be produced in the “Balbiani body.” In the vitellogenic oocytes these lipid spheres are apparently imported by the oocyte from the haemolymph either through the follicle cells, or through the extracellular space in the follicular epithelium. (c) Type 3 is carbohydrate/protein yolk where at least part of the protein (“vitellogenic protein”) is taken up from the haemolymph, transported through the extracellular space in the follicular epithelium, and deposited into the oocyte by pinocytosis. (d) Glycogen is deposited from the early phases of vitellogenesis. The tropharium may contribute, besides Type 1 vacuoles, ribosomes, mitochondria, stacks of annulated lamellae, and “food vacuoles” to the oocytes. Specialized cells which line the tropharium and send projections toward the trophic core have been called “peripheral trophocytes.” Contrary to the regular trophocytes, they contain glycogen and an abundance of Golgi complexes.  相似文献   

15.
The ovaries of Orthezia urticae and Newsteadia floccosa are paired and composed of numerous short ovarioles. Each ovariole consists of an anterior trophic chamber and a posterior vitellarium that contains one developing oocyte. The trophic chamber contains large nurse cells (trophocytes) and arrested oocytes. The total number of germ cells per ovariole (i.e., cluster) is variable, but it is always higher than 32 and less than 64. This suggests that five successive mitotic cycles of a cystoblast plus additional divisions of individual cells are responsible for the generation of the cluster. Cells of the trophic chamber maintain contact with the oocyte via a relatively broad nutritive cord. The trophic chamber and oocyte are surrounded by somatic cells that constitute the inner epithelial sheath around the former and the follicular epithelium around the latter. Anagenesis of hemipteran ovarioles is discussed in relation to the findings presented. © 1995 Wiley-Liss, Inc.  相似文献   

16.
The ultra- and microstructure of the female reproductive system of Matsucoccus matsumurae was studied using light microscopy, scanning and transmission electron microscopy. The results revealed that the female reproductive system of M. matsumurae is composed of a pair of ovaries, a common oviduct, a pair of lateral oviducts, a spermatheca and two pairs of accessory glands. Each ovary is composed of approximately 50 telotrophic ovarioles that are devoid of terminal filaments. Each ovariole is subdivided into an apical tropharium, a vitellarium and a short pedicel connected to a lateral oviduct. The tropharium contains 8–10 trophocytes and two early previtellogenic oocytes termed arrested oocytes. The trophocytes degenerate after egg maturation, and the arrested oocytes are capable of further development. The vitellarium contains 3–6 oocytes of different developmental stages: previtellogenesis, vitellogenesis and choriogenesis. The surface of the vitellarium is rough and composed of a pattern of polygonal reticular formations with a center protuberance. The oocyte possesses numerous yolk spheres and lipid droplets, and is surrounded by a mono-layered follicular epithelium that becomes binucleate at the beginning of vitellogenesis. Accessory nuclei are observed in the peripheral ooplasm during vitellogenesis.  相似文献   

17.
Microinjection of intracellular tracers fluorescein, Procion Yellow, Lucifer Yellow and horseradish peroxidase unequivocally showed the syncytial structure of the tropharium and its interaction with the oocytes. The tropharium tip is a separate isolated compartment. Finger-like nurse cell projections comprising the syncytial tropharium interact via gap junctions along their abutting membranes and also via large cytoplasmic continuities at the central trophic core. The trophic cords connecting the tropharium to oocyte vary in diameter relative to oocyte stage. Continuity of the tropharium with the oocytes is lost at approximately 1000 μm oocyte length and the severed cords then regress from the oocyte to the tropharium base. Variation in cord diameters and timing of cord closure may account for the highly regulated sequential oocyte growth.  相似文献   

18.
The developing ovaries of S. quercus contain a limited number of oogonial cells which undergo a series of incomplete mitotic divisions resulting in the formation of clusters of cystocytes. Ovaries of viviparous generations contain 6 to 9 clusters, containing 32 cystocytes each, whereas ovaries of oviparous generations contain 5 clusters containing 45-60 cystocytes. During further development, clusters become surrounded by a single layer of follicular cells, and within each cluster the cystocytes differentiate into oocytes and trophocytes (nurse cells). Concurrently, cysts transform into ovarioles. The anterior part of the ovariole containing the trophocytes becomes the tropharium, whereas its posterior part containing oocytes transforms into the vitellarium. The vitellaria of viviparous females are composed of one or two oocytes, which develop until previtellogenesis. The nuclei of previtellogenic oocytes enter cycles of mitotic divisions which lead to the formation of the embryo. Ovarioles of oviparous females contain a single oocyte which develops through three stages: previtellogenesis, vitellogenesis and choriogenesis. The ovaries are accompanied by large cells termed bacteriocytes which harbor endosymbiotic microorganisms.  相似文献   

19.
The ovaries of aphids belonging to the families Eriosomatidae, Anoeciidae, Drepanosiphidae, Thelaxidae, Aphididae, and Lachnidae were examined at the ultrastructural level. The ovaries of these aphids are composed of several telotrophic ovarioles. The individual ovariole is differentiated into a terminal filament, tropharium, vitellarium, and pedicel (ovariolar stalk). Terminal filaments of all ovarioles join together into the suspensory ligament, which attaches the ovary to the lobe of the fat body. The tropharium houses individual trophocytes and early previtellogenic oocytes termed arrested oocytes. Trophocytes are connected with the central part of the tropharium, the trophic core, by means of broad cytoplasmic processes. One or more oocytes develop in the vitellarium. Oocytes are surrounded by a single layer of follicular cells, which do not diversify into distinct subpopulations. The general organization of the ovaries in oviparous females is similar to that of the ovaries in viviparous females, but there are significant differences in their functioning: (1) in viviparous females, all ovarioles develop, whereas in oviparous females, some of them degenerate; (2) the number of germ cells per ovariole is usually greater in females of the oviparous generation than in females of viviparous generations; (3) in oviparous females, oocytes in the vitellarium develop through three stages (previtellogenesis, vitellogenesis, and choriogenesis), whereas in viviparous females, the development of oocytes stops after previtellogenesis; and (4) in the oocyte cytoplasm of oviparous females, lipid droplets and yolk granules accumulate, whereas in viviparous females, oocytes accrue only lipid droplets. Our results indicate that a large number of germ cells per ovariole represent the ancestral state within aphids. This trait may be helpful in inferring the phylogeny of Aphidoidea.  相似文献   

20.
The paired ovaries of Steingelia gorodetskia are composed of about 100 telotrophic ovarioles devoid of terminal filaments (scale insect autapomorphy). In structure they resemble those of other scale insects, but differ in the following details: (a) all ovarioles develop synchronously, (b) they are suspended to the lateral oviducts by means of long stalks, (c) the tropharium is tubular (unique in scale insects) and (d) consists of 15-35, trophocytes, 2-4 previtellogenic oocytes that further develop, and numerous somatic prefollicular cells, (e) the vitellarium houses 2-4 linearly arranged vitellarial oocytes (versus one in most scale insects). Most of these features must be considered as plesiomorphic corresponding with the conditions in the most primitive Heteroptera. Bacterial endosymbionts have been found in some somatic cells, trophocytes, oocytes and in the nutritive cord. Present results support the opinion, based on external morphology, that the Steingeliidae are closely related to the Ortheziidae, Xylococcidae and Matsucoccidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号