首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 807 毫秒
1.
Ovary organization in representatives of two families of Fulgoromorpha, Cixiidae (Cixius nervosus) and Delphacidae (Javesella pellucida and Conomelus anceps), was examined by light and transmission electron microscopy. Ovaries of studied fulgoromorphans consist of telotrophic ovarioles. From apex to base individual ovarioles have four well defined regions: a terminal filament, tropharium (trophic chamber), vitellarium and pedicel (ovariolar stalk). Tropharia are not differentiated into distinct zones and consist of syncytial lobes containing multiple trophocyte nuclei embedded in a common cytoplasm. Lobes are radially arranged around a branched, cell-free trophic core. Early previtellogenic (arrested) oocytes and prefollicular cells are located at the base of the tropharium. The vitellarium houses linearly arranged developing oocytes each of which is connected to the trophic core by a broad nutritive cord. Each oocyte is surrounded by a single layer of follicular cells that become binucleate at the beginning of vitellogenesis.  相似文献   

2.
The paired ovaries of young larva of the 3rd instar of Orthezia urticae are filled with numerous germ cell clusters that can be regarded as ovariole anlagen. Germ cells (cystocytes) belonging to one cluster form a rosette, in the centre of which a polyfusome occurs. Staining with rhodamine-phalloidin has revealed that polyfusomes contain numerous microfilaments. The number of cystocytes per cluster is not stable and varies considerably. The ovaries of older larva become elongated with numerous young ovarioles protruding into the body cavity. The ovarioles are not subdivided into the tropharium and vitellarium. In this stage germ cells differentiate into oocytes and trophocytes (nurse cells). The ovaries of adult females are composed of about 20 (Newsteadia floccosa) or 30 (O. urticae) ovarioles. Their trophic chambers contain trophocytes and arrested oocytes. In the vitellarium, at the given moment, only one oocyte develops. It has been observed that after maturation of the first egg the arrested oocytes may develop.  相似文献   

3.
The ovaries of aphids belonging to the families Eriosomatidae, Anoeciidae, Drepanosiphidae, Thelaxidae, Aphididae, and Lachnidae were examined at the ultrastructural level. The ovaries of these aphids are composed of several telotrophic ovarioles. The individual ovariole is differentiated into a terminal filament, tropharium, vitellarium, and pedicel (ovariolar stalk). Terminal filaments of all ovarioles join together into the suspensory ligament, which attaches the ovary to the lobe of the fat body. The tropharium houses individual trophocytes and early previtellogenic oocytes termed arrested oocytes. Trophocytes are connected with the central part of the tropharium, the trophic core, by means of broad cytoplasmic processes. One or more oocytes develop in the vitellarium. Oocytes are surrounded by a single layer of follicular cells, which do not diversify into distinct subpopulations. The general organization of the ovaries in oviparous females is similar to that of the ovaries in viviparous females, but there are significant differences in their functioning: (1) in viviparous females, all ovarioles develop, whereas in oviparous females, some of them degenerate; (2) the number of germ cells per ovariole is usually greater in females of the oviparous generation than in females of viviparous generations; (3) in oviparous females, oocytes in the vitellarium develop through three stages (previtellogenesis, vitellogenesis, and choriogenesis), whereas in viviparous females, the development of oocytes stops after previtellogenesis; and (4) in the oocyte cytoplasm of oviparous females, lipid droplets and yolk granules accumulate, whereas in viviparous females, oocytes accrue only lipid droplets. Our results indicate that a large number of germ cells per ovariole represent the ancestral state within aphids. This trait may be helpful in inferring the phylogeny of Aphidoidea.  相似文献   

4.
The paired ovaries of the investigated species are composed of 20-30 ovarioles of a telotrophic-meroistic type. Each ovariole is subdivided into an apical tropharium (=trophic chamber) and a vitellarium that contains a single developing oocyte. This oocyte is surrounded by a mono-layered follicular epithelium that is responsible for synthesis of precursors of egg envelopes. In Orthezia, synthesis and secretion of precursors of egg envelopes (=choriogenesis) and accumulation of reserve substances in the oocyte cytoplasm (=vitellogenesis) start at the same time. The egg capsule is composed of two envelopes: an internal, thick vitelline envelope and an external, very thin chorion. The egg surface is covered with numerous, irregularly arranged waxy filaments of spiral shape. Eggs are devoid of the micropylar, aeropylar and hydropylar openings.  相似文献   

5.
The ultra- and microstructure of the female reproductive system of Matsucoccus matsumurae was studied using light microscopy, scanning and transmission electron microscopy. The results revealed that the female reproductive system of M. matsumurae is composed of a pair of ovaries, a common oviduct, a pair of lateral oviducts, a spermatheca and two pairs of accessory glands. Each ovary is composed of approximately 50 telotrophic ovarioles that are devoid of terminal filaments. Each ovariole is subdivided into an apical tropharium, a vitellarium and a short pedicel connected to a lateral oviduct. The tropharium contains 8–10 trophocytes and two early previtellogenic oocytes termed arrested oocytes. The trophocytes degenerate after egg maturation, and the arrested oocytes are capable of further development. The vitellarium contains 3–6 oocytes of different developmental stages: previtellogenesis, vitellogenesis and choriogenesis. The surface of the vitellarium is rough and composed of a pattern of polygonal reticular formations with a center protuberance. The oocyte possesses numerous yolk spheres and lipid droplets, and is surrounded by a mono-layered follicular epithelium that becomes binucleate at the beginning of vitellogenesis. Accessory nuclei are observed in the peripheral ooplasm during vitellogenesis.  相似文献   

6.
The ovaries of female lac insects, Kerria chinensis Mahd (Sternorrhyncha: Coccoidea: Kerridae), at the last nymphal stage are composed of several balloon‐like clusters of cystocytes with different sizes. Each cluster consists of several clusters of cystocytes arranging in rosette forms. At the adult stage, the pair of ovaries consists of about 600 ovarioles of the telotrophic‐meroistic type. An unusual feature when considering most scale insects is that the lateral oviducts are highly branched, each with a number of short ovarioles. Each ovariole is subdivided into an anterior trophic chamber (tropharium) containing six or seven large trophocytes and a posterior vitellarium harbouring one oocyte which is connected with the trophic chamber via a nutritive cord. No terminal filament is present. Late‐stage adult females show synchronized development of the ovarioles, while in undernourished females, a small proportion of ovarioles proceed to maturity.  相似文献   

7.
The paired, spindle-shaped ovaries of the second instar of the Polish cochineal, Porphyrophora polonica (L.) (Hemiptera: Coccinea) are filled with cystocytes that are arranged into rosettes. In the centre of each rosette, there is a polyfusome. During the third instar, cystocytes differentiate into oocytes and trophocytes (nurse cells) and ovarioles are formed. Ovaries of adult females are composed of about 300 ovarioles of the telotrophic type. Each of them is subdivided into a tropharium (trophic chamber) and vitellarium. The tropharium consists of trophocytes and arrested oocytes that may develop. The number of germ cells in the trophic chambers varies from 11 to 18 even between the ovarioles of the same ovary. The obtained results seem to confirm the concept of a monophyletic origin of the primitive scale insects (Archaeococcoidea).  相似文献   

8.
Szklarzewicz, T., Kalandyk‐Kolodziejczyk, M., Kot, M. and Michalik, A. 2011. Ovary structure and transovarial transmission of endosymbiotic microorganisms in Marchalina hellenica (Insecta, Hemiptera, Coccomorpha: Marchalinidae). —Acta Zoologica (Stockholm) 00 :1–9. The paired ovaries of Marchalina hellenica are composed of about 200 ovarioles of telotrophic type. In each ovariole, a trophic chamber, vitellarium and ovariolar stalk can be distinguished. The tropharia comprise trophocytes and early previtellogenic oocytes (termed arrested oocytes) or trophocytes only. The arrested oocytes are not capable of further development. In the vitellaria, single oocytes develop that are connected to the tropharium by means of broad nutritive cords. The number of germ cells (trophocytes and oocytes) constituting ovarioles is not constant and may range between 25 and 32. Numerous endosymbiotic bacteria occur in the cytoplasm of trophocytes. The endosymbionts are transported via nutritive cords to the developing oocyte. The obtained results are discussed in a phylogenetic context.  相似文献   

9.
The structure of ovaries has been analysed in advanced aphids only. In this paper we report the results of ultrastructural studies on the ovarioles of Adelges laricis, a representative of the primitive aphid family, Adelgidae. The ovaries of the studied species are composed of five telotrophic‐meroistic ovarioles that are subdivided into a terminal filament, tropharium (= trophic chamber) and vitellarium. The tropharium houses trophocytes (= nurse cells) and arrested oocytes. The vitellarium consists of one or two ovarian follicles. The total number of germ cells (trophocytes + oocytes) in the ovarioles analysed varies from 50 to 92 and is substantially higher than in previously studied aphids. The centre of the tropharium is occupied by a cell‐free region, termed a trophic core, which is connected both with trophocytes and oocytes. Trophocytes are connected to the core by means of cytoplasmic strands, whereas oocytes by nutritive cords. Both trophic core and nutritive cords are filled with parallel arranged microtubules. In the light of obtained results the anagenesis of hemipteran ovaries is discussed.  相似文献   

10.
Telotrophic ovariole of Raphidia spp. is composed of the anteriorly located terminal filament, tube-shaped tropharium, the vitellarium and the ovariole stalk. The tropharium consists of a central syncytial core surrounded by one cell thick layer of tapetum cells. Early previtellogenic oocytes differentiate at the base of tropharium. Both the oocytes and the tapetum cells are connected with the central syncytium by delicate intercellular bridges. At the onset of previtellogenic growth, the anterior parts of the oocytes become extended and form long cytoplasmic projections--nutritive cords. Each nutritive cord contains numerous microtubules that show no preferential orientation within the cord but diminishing anterior-posterior gradient of distribution. Irregular arrangement of microtubules indicates that this cytoskeletal scaffold does not play any role in directed transport within the ovariole but instead constitutes one of the elements of the structural framework of the nutritive cord. Besides microtubules, the stability of the nutritive cords in Raphidia ovarioles is maintained by the rim-shaped membrane foldings lined with microfilaments.  相似文献   

11.
Capnodis tenebrionis causes damage in many species of Rosaceae. The present study investigates on the morphology of the female reproductive system of C. tenebrionis. The female reproductive system of C. tenebrionis has a pair of ovaries, lateral oviducts, a common oviduct, spermatheca, and bursa copulatrix. Each ovary in C. tenebrionis consists of approximately 24 telotrophic meroistic type ovarioles. The ovarioles of C. tenebrionis have four regions (terminal filament, tropharium, vitellarium, and pedicel). Tropharium have trophocytes, young oocytes, and prefollicular cells. Vitellarium consists of previtellogenic, vitellogenic, and choriogenic oocytes. Previtellogenic oocyte is surrounded by cylindrical epithelial cells. Its ooplasm is homogeneous and basophilic. In vitellogenic oocyte, there are intercellular spaces between monolayered follicle cells. Its ooplasm has yolk granules and lipid droplets. Choriogenic oocyte are surrounded by chorion and single-layered cylindrical cells. There are yolk granules and lipid droplets in its ooplasm which is asidophilic. In C. tenebrionis female, spermatheca and bursa copulatrix wall is surrounded by thin cuticular intima, monolayer epithelial, glandular cells, and muscle layer. Spermatheca lumen contains a large number of spermatozoa. Bursa copulatrix lumen is filled with secretory material. This study may be useful in terms of the morphology of mature female reproductive organs of Buprestidae and other coleopteran species.  相似文献   

12.
Microinjection of intracellular tracers fluorescein, Procion Yellow, Lucifer Yellow and horseradish peroxidase unequivocally showed the syncytial structure of the tropharium and its interaction with the oocytes. The tropharium tip is a separate isolated compartment. Finger-like nurse cell projections comprising the syncytial tropharium interact via gap junctions along their abutting membranes and also via large cytoplasmic continuities at the central trophic core. The trophic cords connecting the tropharium to oocyte vary in diameter relative to oocyte stage. Continuity of the tropharium with the oocytes is lost at approximately 1000 μm oocyte length and the severed cords then regress from the oocyte to the tropharium base. Variation in cord diameters and timing of cord closure may account for the highly regulated sequential oocyte growth.  相似文献   

13.
Ovaries of phylloxerids consist of short telotrophic ovarioles. Ovaries of wingless morphs contain four ovarioles whereas those of winged morphs contain one or two ovarioles. The individual ovariole of the adult female is differentiated into a terminal filament, trophic chamber (tropharium), vitellarium and short ovariole stalk (pedicel). The number of germ cells constituting ovarioles is not stable and ranges between 49 and 64. The tropharia enclose individual trophocytes and arrested oocytes. The vitellaria contain usually two oocytes, which develop through three stages: previtellogenesis, vitellogenesis and choriogenesis. Endosymbiotic microorganisms do not occur in the germ cells. In the light of the obtained results, the phylogenetic relationships between aphid families are discussed.  相似文献   

14.
The ovaries of Euborellia fulviceps are composed of five elongated ovarioles of meroistic-polytrophic type. The individual ovariole has three discernible regions: the terminal filament, germarium, and vitellarium. The terminal filament is a stalk of flattened, disc-shaped somatic cells. In the germarium, germline cells in subsequent stages of differentiation are located, and the vitellarium comprises numerous ovarian follicles arranged linearly. The individual ovarian follicles within the vitellarium are separated by prominent interfollicular stalks. The follicles are composed by two germline cells only: an oocyte and a single, polyploid nurse cell, which are surrounded by a monolayer of somatic follicular cells (FCs). During subsequent stages of oogenesis, initially uniform follicular epithelium begins to diversify into morphologically and physiologically distinct subpopulations. In E. fulviceps, the FC diversification mode is rather simple and leads to the formation of only three different FC subpopulations: (1) cuboidal FCs covering the oocyte, (2) stretched FCs surrounding the nurse cell and (3) FCs actively migrating between oocyte and a nurse cell. We found that FCs from the latter subpopulation send long and thin filopodium-like and microtubule-rich processes penetrating between the oocyte and nurse cell membranes. This suggests that, in E. fulviceps, cells from at least one FCs subpopulation show the ability to change position within an ovarian follicle by means of active migration.  相似文献   

15.
The morphoanatomy of the ovary in Veturius sinuatus (Eschscholtz) was studied by light and transmission electron microscopy. Data from the female gonad of this species provide more extended and precise knowledge regarding the organization of the ovary in Passalidae. Ovaries are composed of a pair of long telotrophic meroistic ovarioles, with some differences compared to the bauplan of this ovary type in Polyphaga (Coleoptera). The terminal filament has an enlarged proximal region with irregularly shaped cells in apparent degeneration process embedded in a membranous system. Globular structures with amorphous content associated with interstitial cells are distributed throughout the tropharium. Trophocytes develop with the reduction of the plasma membrane between sibling nurse cells of each cluster. Previtellogenic oocytes have an irregular shape and various cytoplasmic prolongations. As oogenesis advances, a single prolongation in the anterior part of the oocyte extends to the tropharium. The ovary structure is comparable to that found in other American species of passalids, and further, the conformation of the terminal filament could be a plesiomorphic character of the family.  相似文献   

16.
Endosymbiont transmission via eggs to future host generations has been recognized as the main strategy for its persistence in insect hosts; however, the mechanisms for transmission have yet to be elucidated. Here, we describe the dynamic locations of Rickettsia in the ovarioles and eggs during oogenesis and embryogenesis in a globally significant pest whitefly Bemisia tabaci.Field populations of the whitefly have a high prevalence of Rickettsia, and in all Rickettsia-infected individuals, the bacterium distributes in the body cavity of the host, especially in the midgut, fat body, hemocytes, hemolymph, and near bacteriocytes. The distribution of Rickettsia was subjected to dynamic changes in the ovary during oogenesis, and our ultrastructural observations indicated that the bacteria infect host ovarioles during early developmental stages via two routes:(i) invasion of the tropharium by endocytosis and then transmission into vitellarium via nutritive cord and(ii) entry into vitellarium by hijacking bacteriocyte translocation. Most of the Rickettsia are degraded in the oocyte cytoplasm in late-stage oogenesis. However, a few reside beneath the vitelline envelope of mature eggs, spread into the embryo, and proliferate during embryogenesis to sustain high-fidelity transmission to the next generation. Our findings provide novel insights into the maternal transmission underpinning the persistence and spread of insect symbionts.  相似文献   

17.
Abstract. Ovarian ultrastructure and oogenesis in two pycnogonid species, Cilunculus armatus and Ammothella biunguiculata , were investigated. The ovary is morphologically and functionally divided into trunk and pedal parts. The former represents the germarium and contains very young germ cells in a pachytene or postpachytene phase, whereas the latter houses developing previtellogenic and vitellogenic oocytes and represents the vitellarium. Intercellular bridges were occasionally found between young (trunk) germ cells. This indicates that in pycnogonids, as in other animal groups, at the onset of oogenesis clusters of germ cells are generated. As nurse cells are absent in the ovaries of investigated species, the clusters must secondarily split into individual oocytes. In the vitellarium, the oocytes are located outside the ovary. Each oocyte is connected to the ovarian tissue by a stalk composed of several somatic cells. The stalk cells directly associated with the oocyte are equipped with irregular projections that reach the oocyte plasma membrane. This observation suggests that the stalk cells may play a nutritive role. The ooplasm of vitellogenic oocytes comprises mitochondria, free ribosomes, stacks of annulate lamellae, active Golgi complexes, and vesicles derived from these complexes. Within the latter, numerous electron-dense bodies are present. We suggest that these bodies contribute to yolk formation.  相似文献   

18.
The female reproductive system of the pig louse, Haematopinus suis (Insecta: Phthiraptera) is composed of paired ovaries, lateral oviducts, and a common oviduct that leads into a vagina. Clusters of mycetocytes (= cells filled with symbiotic organisms) are associated with lateral oviducts. Each ovary is composed of five loosely arranged ovarioles of the polytrophic-meroistic type. An individual ovariole is covered by a basal lamina and is composed of a terminal filament, germarium, and vitellarium. The terminal filament is composed of large, disc-shaped cells that are orientated perpendicularly to the long axis ofthe ovariole. The basal part of the terminal filament is separated from the germarium by a well-developed transverse septum. The germarium is short and filled with clusters of oogonial cells. In each cluster the cells arejoined by intercellular bridges, filled with fusomal material. Within the cluster, only one cell, the future oocyte, enters the prophase of the first meiotic division; the other cells differentiate into nurse cells. The basal part ofthe germarium is filled with the somatic prefollicular cells. The boundary between the germarium and the vitellarium is not distinct. The vitellarium contains linearly arranged ovarian follicles in subsequent stages of oogenesis (previtellogenesis, vitellogenesis and choriogenesis). Each follicle consists of an oocyte and 7 nurse cells and is surrounded by follicular cells. During oogenesis the follicular cells diversify, so that ultimately, five morphologically distinct subpopulations of these cells can be distinguished: (1) cells in contact with the nurse cells, (2) anterior cells, (3) mainbody cells, (4) posterior cells, and (5) interfollicular cells. Interestingly, the follicular cells associated with the anterior part of the oocyte, i.e. located in space at the oocyte/nurse cell border (fold cells) are mitotically active throughout previtellogenesis. It might be suggested, in this context, that the separation of the oocyte from the nurse cell compartment is brought about by mitotic divisions, consequent multiplication and centripetal migration of these cells.  相似文献   

19.
Germ line cell cluster formation in ovarioles of three different stages, each from a different mayfly species, was studied using ultra-thin serial sectioning. In the analysed ovariole of Cloeön sp., only one linear, zigzag germ line cell cluster was found, consisting of sibling cells connected by intercellular bridges which represent remnants of preceding synchronized mitotic cycles followed by incomplete cytokinesis. A polyfusome stretched through all sibling cells. At the tip of the ovariole, cytokinesis occurred without preceding division of nuclei; thus, intercellular bridges were lined up but the remaining cytoplasm between the bridges had no nuclei. The analysed Siphlonurus armatus vitellarium contained five oocytes at different stages of development. Each oocyte in the vitellarium was connected via a nutritive cord to the linear cluster of its sibling cells in the terminal trophic chamber. Each cluster had the same architecture as was found in Cloëon. The 3-dimensional arrangement and distribution of closed intercellular bridges strongly suggest that all five clusters are derived from a single primary clone. The position of oocytes within each cluster is random. However, each oocyte is embraced by follicular or prefollicular cells whilst all other sibling cells are enclosed by somatic inner sheath cells, clearly distinguishable from prefollicular cells. In the analysed ovariole of Ephemerella ignita, two small linear clusters were found in the tropharium beside two single cells, two isolated cytoplasmic bags with intercellular bridges but no nuclei, and some degenerating aggregates. One cluster was still connected to a growing oocyte via a nutritive cord. In all species the nurse cells remained small and no indications of polyploidization were found. We suggest that this ancient and previously unknown telotrophic meroistic ovary has evolved directly from panoistic ancestors.  相似文献   

20.
The developing ovaries of S. quercus contain a limited number of oogonial cells which undergo a series of incomplete mitotic divisions resulting in the formation of clusters of cystocytes. Ovaries of viviparous generations contain 6 to 9 clusters, containing 32 cystocytes each, whereas ovaries of oviparous generations contain 5 clusters containing 45-60 cystocytes. During further development, clusters become surrounded by a single layer of follicular cells, and within each cluster the cystocytes differentiate into oocytes and trophocytes (nurse cells). Concurrently, cysts transform into ovarioles. The anterior part of the ovariole containing the trophocytes becomes the tropharium, whereas its posterior part containing oocytes transforms into the vitellarium. The vitellaria of viviparous females are composed of one or two oocytes, which develop until previtellogenesis. The nuclei of previtellogenic oocytes enter cycles of mitotic divisions which lead to the formation of the embryo. Ovarioles of oviparous females contain a single oocyte which develops through three stages: previtellogenesis, vitellogenesis and choriogenesis. The ovaries are accompanied by large cells termed bacteriocytes which harbor endosymbiotic microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号