首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A simple, sequential approach for creation of hydrolytically degradable poly(ethylene glycol) (PEG) hydrogels has been developed and characterized. The chemistry involves an initial step growth polymerization reaction between PEG-diacrylate and dithiothreitol (DTT) to form acrylate-terminated (-PEG-DTT-)n PEG chains, followed by photocross-linking to form a hydrogel network. Varying the extent of step growth polymerization prior to photocross-linking allowed for control over the equilibrium swelling ratio, degradation, and erosion of PEG hydrogels. Hydrogel degradability had a significant effect on behavior of human mesenchymal stem cells (hMSCs) encapsulated within PEG hydrogels, both in the presence and absence of an RGDSP cell adhesion ligand. In particular, enhanced network degradability resulted in enhanced hMSC viability and spreading during in vitro culture. Comparison of degradable and nondegradable hydrogels with similar physical properties (e.g., equilibrium swelling ratio) demonstrated that hMSC viability and spreading were dependent on network degradability. This study demonstrates that hydrolytically degradable PEG hydrogels can be formed via a sequential step growth polymerization and photocross-linking process and the resulting materials may serve as promising matrices for 3-dimensional stem cell culture and tissue engineering applications.  相似文献   

2.
The mass transport of solutes through hydrogels is an important design consideration in materials used for tissue engineering, drug delivery, and protein arrays used to quantify protein concentration and activity. We investigated the use of poly(ethylene glycol) (PEG) as a porogen to enhance diffusion of macromolecules into the interior of polyacrylamide and PEG hydrogel posts photopatterned within microfluidic channels. The diffusion of GST-GFP and dextran-FITC into hydrogels was monitored and effective diffusion coefficients were determined by fitting to the Fickian diffusion equations. PEG-diacrylate (M(r) 700) with porogen formed a macroporous structure and permitted significant penetration of 250 kDa dextran. Proteins copolymerized in these macroporous hydrogels retained activity and were more accessible to antibody binding than proteins copolymerized in nonporous gels. These results suggest that hydrogel macroporosity can be tuned to regulate macromolecular transport in applications such as tissue engineering and protein arrays.  相似文献   

3.
This work describes the formation of poly(ethylene glycol) (PEG) microgels via a photopolymerized precipitation reaction. Precipitation reactions offer several advantages over traditional microsphere fabrication techniques. Contrary to emulsion, suspension, and dispersion techniques, microgels formed by precipitation are of uniform shape and size, i.e. low polydispersity index, without the use of organic solvents or stabilizers. The mild conditions of the precipitation reaction, customizable properties of the microgels, and low viscosity for injections make them applicable for in vivo purposes. Unlike other fabrication techniques, microgel characteristics can be modified by changing the starting polymer molecular weight. Increasing the starting PEG molecular weight increased microgel diameter and swelling ratio. Further modifications are suggested such as encapsulating molecules during microgel crosslinking. Simple adaptations to the PEG microgel building blocks are explored for future applications of microgels as drug delivery vehicles and tissue engineering scaffolds.  相似文献   

4.
Stability enhancement of protein-loaded chitosan microparticles under storage was investigated. Chitosan glutamate at 35 kDa and bovine serum albumin as model protein drug were used in this study. The chitosan microparticles were prepared by ionotropic gelation, and polyethylene glycol 200 (PEG 200) was applied after the formation of the particles. All chitosan microparticles were kept at 25°C for 28 days. A comparison was made between those preparations with PEG 200 and without PEG 200. The changes in the physicochemical properties of the microparticles such as size, zeta potential, pH, and percent loading capacity were investigated after 0, 3, 7, 14, and 28 days of storage. It was found that the stability decreased upon storage and the aggregation of microparticles could be observed for both preparations. The reduction in the zeta potential and the increase in the pH, size, and loading capacity were observed when they were kept at a longer period. The significant change of those preparations without PEG 200 was evident after 7 days of storage whereas those with PEG 200 underwent smaller changes with enhanced stability after 28 days of storage. Therefore, this investigation gave valuable information on the stability enhancement of the microparticles. Hence, enhanced stability of chitosan glutamate microparticles for the delivery of protein could be achieved by the application of PEG 200.  相似文献   

5.
The fabrication and characterization of surface-attached PEG-diacrylate hydrogel structures and their application as sensing platforms for the detection of specific target sequences are reported. Hydrogel structures were formed by a photopolymerization process, using substrate-bound Eosin Y molecules for the production of free radicals. We have demonstrated that this fabrication process allows for control over hydrogel growth down to the micrometer scale. Confocal imaging revealed relatively large pore structures for 25% (v/v) PEG-diacrylate hydrogels, which appear to lie in tightly packed layers. Our data suggest that these pore structures decrease in size for hydrogels with increasing levels of PEG-diacrylate. Surface coverage values calculated for hydrogels immobilized with 21-mer DNA probe sequences were significantly higher compared to those previously reported for 2- and 3-dimensional sensing platforms, on the order of 10(16)molecules cm(-2). Used as sensing platforms in DNA hybridization assays, a detection limit of 3.9 nM was achieved for hybridization reactions between 21-mer probe and target sequences. The ability of these hydrogel sensing platforms to discriminate between wild-type and mutant allele sequences was also demonstrated, down to target concentrations of 1-2 nM. A reduction in the hybridization time down to a period of 15 min was also achieved, while still maintaining confident results, demonstrating the potential for future integration of these sensing platforms within Lab-on-Chip or diagnostic devices.  相似文献   

6.
Surface modification of amine-terminated polyamidoamine (PAMAM) dendrimers by poly(ethylene glycol) (PEG) groups generally enhances water-solubility and biocompatibility for drug delivery applications. In order to provide guidelines for designing appropriate dendritic scaffolds, a series of G3 PAMAM-PEG dendrimer conjugates was synthesized by varying the number of PEG attachments and chain length (shorter PEG 550 and PEG 750 and longer PEG 2000). Each conjugate was purified by size exclusion chromatography (SEC) and the molecular weight (MW) was determined by (1)H NMR integration and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). NOESY experiments performed in D 2O on selected structures suggested no penetration of PEG chains to the central PAMAM domain, regardless of chain length and degree of substitution. CHO cell cultures exposed to PAMAM-PEG derivatives (< or =1 microM) showed a relatively high cell viability. Generally, increasing the degree of PEG substitution reduced cytotoxicity. Moreover, compared to G3 PAMAM dendrimers that were N-acetylated to varying degrees, a lower degree of surface substitution with PEG was needed for a similar cell viability. Interestingly, when longer PEG 2000 was fully incorporated on the surface, cell viability was reduced at higher concentrations (32 muM), suggesting increased toxicity potentially by forming intermolecular aggregates. A similar observation was made for anionic carboxylate G5.5 PAMAM dendrimer at the same dendrimer concentration. Our findings suggest that a lower degree of peripheral substitution with shorter PEG chains may suffice for these PAMAM-PEG conjugates to serve as efficient universal scaffolds for drug delivery, particularly valuable in relation to targeting or other ligand-receptor interactions.  相似文献   

7.
In this study, peptide-loaded microparticles were prepared using an aerosol solvent extraction system (ASES) by employing supercritical carbon dioxide as an antisolvent. The effects of the molecular weight of poly(Llactide) (PLLA), poly(ethylene glycol) (PEG), the block length of methoxy poly(ethylene glycol)-b-poly(L-lactide) (mPEG-PLLA), the blending of PLLA and PEG, and the drug-to-polymer feed ratio on the formation of leuprolide acetate (LA)-loaded microparticles and their release characteristics were investigated. Scanning electron microscope observations showed that the LA-loaded polymer particles had a spherical morphology with a smooth surface. The entrapment efficiency of LA in the ASES-processed microparticles was found to be extremely high (about 99%), whereas the initial release rate of the LA-loaded microparticles was very low for PLLA. The release rate of LA was observed to increase as the PEG block length of mPEG-PLLA and/or the drug content in the microparticles increased. When PLLA was blended with PEG, the release rate of LA from the PLLA/PEG microparticles was significantly faster compared with the corresponding mPEG-PLLA copolymer.  相似文献   

8.
In this paper the demonstration is made that membrane vesicles (liposomes) containing the muscarinic receptor can be formed by polyethylene glycol (PEG) precipitation of detergent extracts of bovine atrial membranes. The incorporation of the muscarinic receptor in these vesicles may be related to the restoration of the heterogeneity and nucleotide modulation of muscarinic agonist binding by PEG precipitation of atrial detergent extracts, previously reported. Vesicles are also formed when detergent solubilized asolectin lipids, alone or in combination with membrane detergent extracts, are precipitated by PEG. The structure of the vesicles seems depend on their lipid and protein composition and the procedure employed for the removal of the dispersing medium. These results indicate that PEG precipitation could be used for the reconstitution of the muscarinic receptor into the liposomes of exogenous lipids.Special Issue dedicated to Prof. Eduardo De Robertis.  相似文献   

9.
Chen G  Felgner PL  Guan Z 《Biomacromolecules》2008,9(7):1745-1754
Here we present an efficient synthesis of functional dendritic polymers carrying internal fluorescence labels for bioconjugation. Specifically, dendritic polymers having pyrene as fluorescence label in the core and N-hydroxysuccinimide (NHS) functional groups at the periphery were synthesized by coupling heterobifunctional PEG to hydroxyl functionalized dendritic polyethylene core. The dendritic polyethylene cores containing one pyrene label per polymer molecule were prepared through a one-step transition-metal-catalyzed polymerization using a pyrene-labeled Pd(II)-alpha-diimine chain walking catalyst. A series of pyrene-labeled dendritic scaffolds were obtained with different molecular weights and sizes. NHS active end groups were introduced to the periphery of the dendritic scaffolds through end-group functionalization. Those NHS-functionalized dendritic scaffolds were successfully used to conjugate a model protein, ovalbumin, to yield protein-polymer conjugates carrying multiple copies of protein attached to each scaffold.  相似文献   

10.
The present investigation aims to explore the role of cell-scaffold interactions and whole cell compression in chondrocyte mechanotransduction using encapsulating poly(ethylene glycol) (PEG) hydrogel scaffolds and primary bovine chondrocytes. Scaffolds made from PEG hydrogels with immobilized fibrinogen molecules were seeded with chondrocytes and subjected to 15% dynamic compressive strain at 1-Hz frequency. Dynamic strain stimulation resulted in a 37% increase in the levels of sulfated glycosaminoglycan (sGAG) after 2 weeks of stimulation, when compared to static controls. Comparing results of the PEG-fibrinogen scaffolds with their respective PEG control group did not show significant differences between the two, even following 2 weeks of dynamic mechanical stimulation. Accordingly, these findings indicate that while cell deformations cause metabolic changes in chondrocytes seeded in PEG hydrogels, it is difficult to ascertain the role of matrix bioactivity in enhancing chondrocyte mechanotransduction in encapsulating scaffolds subjected to physical deformations. This study shows how interactions between mechanical stimulation and scaffold composition are evaluated using an experimental approach and customized biomaterial scaffolds.  相似文献   

11.
Summary Crude extract isolated from Aerococcus viridans was purified by ethanol, ammonium sulphate or PEG precipitation followed by ion-exchange chromatography. The best purification (7.7-fold) and GPO recovery-81% were achieved when PEG precipitation as a first purification step was used. Gel FPLC following PEG precipitation yielded 92% of GPO but only 3.3-fold purification.  相似文献   

12.
Currently, oligo[poly(ethylene glycol) fumarate] (OPF) hydrogels are being investigated as an injectable and biodegradable system for tissue engineering applications. In this study, cytotoxicity of each component of the OPF hydrogel formulation and the resulting cross-linked network was examined. Specifically, OPF synthesized with poly(ethylene glycol) (PEG) of different molecular weights (MW), the cross-linking agent [PEG-diacrylate (PEG-DA)], and the redox initiator pair [ammonium persulfate (APS) and ascorbic acid (AA)] were evaluated for cytotoxicity at 2 and 24 h using marrow stromal cells (MSCs) as model cells. The effect of leachable byproducts of OPF hydrogels on cytotoxicity was also investigated. Upon exposure to various concentrations of OPF for 2 h, greater than 50% of the MSCs were viable, regardless of OPF molecular weight or concentration in the media. After 24 h, the MSCs maintained more than 75% viability except for OPF concentrations higher than 25% (w/v). When examining the cross-linking agent, PEG-DA of higher MW (3400) demonstrated significantly higher viability compared to PEG-DA with MW 575 at all concentrations tested. Considering initiators, when MSCs were exposed to AA and APS, as well as the combination of AA and APS, higher viability was observed at lower concentrations. Once cross-linked, the leachable products from the OPF hydrogels had minimal adverse effects on the viability of MSCs (percentage of live cells was higher than 90% regardless of hydrogel types). The results suggest that, after optimization of cross-linking parameters, OPF-based hydrogels hold promise as novel injectable scaffolds or cell carriers in tissue engineering.  相似文献   

13.
We have synthesized elastin mimetic hybrid polymers (EMHPs) via the step-growth polymerization of azide-functionalized poly(ethylene glycol) (PEG) and alkyne-terminated peptide (AKAAAKA)(2) (AK2) that is abundant in the cross-linking domains of the natural elastin. The modular nature of our synthesis allows facile adjustment of the peptide sequence to modulate the structural and biological properties of EMHPs. Therefore, EMHPs containing cell-binding domains (CBDs) were constructed from α,ω-azido-PEG and two types of alkyne-terminated AK2 peptides with sequences of DGRGX(AKAAAKA)(2)X (AK2-CBD1) and X(AKAAAKA)(2)XGGRGDSPG (AK2-CBD2, X = propargylglycine) via a step-growth, click coupling reaction. The resultant hybrid copolymers contain an estimated five to seven repeats of PEG and AK2 peptides. The secondary structure of EMHPs is sensitive to the specific sequence of the peptidic building blocks, with CBD-containing EMHPs exhibiting a significant enhancement in the α-helical content as compared with the peptide alone. Elastomeric hydrogels formed by covalent cross-linking of the EMHPs had a compressive modulus of 1.06 ± 0.1 MPa. Neonatal human dermal fibroblasts (NHDFs) were able to adhere to the hydrogels within 1 h and to spread and develop F-actin filaments 24 h postseeding. NHDF proliferation was only observed on hydrogels containing RGDSP domains, demonstrating the importance of integrin engagement for cell growth and the potential use of these EMHPs as tissue engineering scaffolds. These cell-instructive, hybrid polymers are promising candidates as elastomeric scaffolds for tissue engineering.  相似文献   

14.
Thermoresponsive poly(N-isopropylacrylamide) (pNIPAm) microgel particles cross-linked with various concentrations of PEG diacrylates of 3 different PEG chain lengths were synthesized via free-radical precipitation polymerization in order to investigate the phase transition and protein adsorption behavior as the hydrophilicity of the network is increased. Photon correlation spectroscopy (PCS) reveals that, as the concentration of PEG cross-linker incorporated into the particles is increased, an increase in the temperature and breadth of the phase transition occurs. Qualitative differences in particle density using isopycnic centrifugation confirm that higher PEG concentrations result in denser networks. The efficient incorporation of PEG cross-linker was confirmed with (1)H NMR, and variable temperature NMR studies suggest that, in the deswollen state, the longer PEG cross-links protrude from the dense globular network. This behavior apparently manifests itself as a decrease in nonspecific protein adsorption with increasing PEG length and content. Furthermore, when electrostatically attached to a glass surface, the particles containing the longer chain lengths exhibited enhanced nonfouling behavior and were resistant to cell adhesion in serum-containing media. The excellent performance of these particulate films and the simplicity with which they are assembled suggests that they may be applicable in a wide range of applications where nonfouling coatings are required.  相似文献   

15.
The objective of this study was to investigate the influence of processing parameters on the morphology, porosity, and crystallinity of polymeric polyethylene glycol (PEG) microparticles by spray freezing into liquid (SFL), a new particle engineering technology. Processing parameters investigated were the viscosity and flow rate of the polymer solution, nozzle diameter, spray time, pressure, temperature, and flow rate of the cryogenic liquid. By varying the processing parameters and feed composition, atomization and heat transfer mechanisms were modified resulting in particles of different size distribution, shape, morphology, density, porosity, and crystallinity. Median particle diameter (M50) varied from 25 μm to 600 μm. Particle shape was spherical or elongated with highly irregular surfaces. Granule density was between 0.5 and 1.5 g/mL. In addition to producing particles of pure polymer, drug particles were encapsulted in polymeric microparticles. The encapsulation efficiency of albuterol sulfate was 96.0% with a drug loading of 2.4%, indicating that SFL is useful for producing polymeric microparticles for drug delivery applications. It was determined that the physicochemical characteristics of model polymeric microparticles composed of PEG could be modified for use as a drug delivery carrier.  相似文献   

16.
Polyethylene glycol (PEG) is extensively employed for protein purification by fractional precipitation. Efficiency of precipitation is highest when the solution pH is near the isoelectric point of the target protein. At pH values far from the isoelectric point of the target protein, proteins develop a net positive or negative charge and are not more resistant to precipitation. We have found that divalent cations (Ba2+, Sr2+, and Ca2+) or divalent anions (SO4(2-)) significantly change the pattern of PEG precipitation when the ion is chosen so as to counteract the expected net charge on the target protein. At moderate (5-50 mM) concentrations of Ba2+, negatively charged proteins can be precipitated from solution at pH values as high as 10 with efficiency unchanged from precipitation at pH values near their isoelectric point values. The mechanism of PEG precipitation of protein at these high pH values appears to be unchanged from the mechanism operative at the protein isoelectric point. Precipitation is rapid and the capacity for protein precipitation is high. There is no detectable coprecipitation of small molecules (AMP, ATP, and NADH) or soluble proteins (carbonic anhydrase) induced when large quantities of protein are precipitated by this method. The purification of bovine carbonic anhydrase from erythrocyte lysate is more efficient at pH 10 in the presence of Ba2+ than is conventional PEG precipitation carried out at the isoelectric point of carbonic anhydrase. Application of these observations should broaden the utility of protein purification by fractional precipitation with PEG.  相似文献   

17.
Quaternized poly(vinylpyridine) (PVP) is a polymer with inherent antimicrobial properties that is effective against Gram-positive bacteria, Gram-negative bacteria, viruses, and yeast cells. However, quaternized PVP has poor biocompatibility, which prevents its use in biomaterial applications. Copolymerization was examined as a method of modifying the structure to incorporate biocompatibility. Polyethyleneglycol methyl ether methacrylate (PEGMA) and hydroxyethyl methacrylate (HEMA) are polymers generally known to be biocompatible and thus were chosen as comonomers. Random copolymers of 4-vinylpyridine and PEGMA or HEMA were synthesized via free radical polymerization and quaternized with bromohexane. Copolymer biocompatibility was characterized by interaction with human red blood cells to analyze hemolysis. Hemolysis of human red blood cells was conducted on insoluble films and on water-soluble polymers in a serial dilution study. Hemolysis results demonstrated that blood compatibility does not depend on PEG chain length in PEGMA incorporated copolymers. Results indicate a critical weight ratio of PEGMA to VP in copolymers separating the no-hemolysis regime from 100% hemolysis.  相似文献   

18.
Guo J  Wei Y  Zhou D  Cai P  Jing X  Chen XS  Huang Y 《Biomacromolecules》2011,12(3):737-746
Poly(ε-lysine) (ε-PL)-analogous click polypeptides with not only similar α-amino side groups but also similar main chain to ε-PL were chemically synthesized for the first time through click polymerization from aspartic (or glutamic)-acid-based dialkyne and diazide monomers. With microwave-assisting, the reaction time of click polymerization was compressed into 30 min. The polymers were fully characterized by NMR, ATR-FTIR, and SEC-MALLS analysis. The deprotected click polypeptides had similar pK(a) value (7.5) and relatively low cytotoxicity as ε-PL and could be used as substitutes of ε-PL in biomedical applications, especially in endotoxin selective removal. Poly(ethylene glycol) (PEG)-containing alternating copolymers with α-amino groups were also synthesized and characterized. After deprotection, the polymers could be used as functional gene vector with PEG shadowing system and NCA initiator to get amphiphilic graft polymers.  相似文献   

19.
Hyperimmune anti-hog cholera and nonimmune swine sera yielded approximately 50% more precipitation reactions in agar-gel diffusion tests with pancreas extracts from SPF noninfected swine than with extracts obtained from swine experimentally infected with virulent hog cholera virus. The pancreas-reacting property of swine serum was determined to be relatively heat stable, withstanding 68 C for 30 minutes. Of various swine serum fractions tested, the only one that reacted with pancreas extracts contained gamma, beta and alpha-globulins. In the absence of alpha-globulin, precipitation reactions were not observed. Sera of newborn SPF piglets, containing 50% alpha-2 globulin, formed more intense precipitation lines with swine pancreas extracts than were formed by the sera of their dams with the same extracts. The pancreas-reacting activity of swine sera was completely removed by absorption with pancreatic tissue. This property was not removed by absorption with guinea pig kidney, or beef, swine or human erythrocytes. Maceration of pancreatic tissue released reactive substances in a polydispersed form. This was demonstrated by the ability of almost all supernates and sediments from differential centrifugation of such preparations to form precipitation lines with swine sera. Reactive substances from swine pancreas were found to be relatively heat labile, being inactivated in one hour at 56C. No evidence was obtained in this study to indicate that the observed precipitation reactions were related to hog cholera virus and its corresponding antibody. The reactions are believed to have resulted from the interaction of protein-related substances present in normal swine pancreas with a relatively heat stable component, possibly alpha-globulin, in swine serum.  相似文献   

20.
Emulsion templated scaffolds that include gelatin and glycosaminoglycans   总被引:1,自引:0,他引:1  
Gelatin is one of the most commonly used biopolymer for creating cellular scaffolds due to its innocuous nature. To create stable gelatin scaffolds at physiological temperature (37 degrees C), chemical cross-linking is a necessary step. In a previous paper (Biomacromolecules 2006, 7, 3059-3068), cross-linking was carried out by either radical polymerization of the methacrylated derivative of gelatin (GMA) or through the formation of isopeptide bonds catalyzed by transglutaminase. The method of scaffold production was based on emulsion templating in which an organic phase is dispersed in the form of discrete droplets into a continuous aqueous solution of the biopolymer. Both kinds of scaffolds were tested as culture medium for hepatocytes. It turned out that the enzymatic cross-linked scaffold performed superiorily in this respect, even though it was mechanically less stable than the GMA scaffold. In the present paper, in an attempt to improve the biocompatibility of the GMA-based scaffold, biopolymers present in the extracellular matrix (ECM) were included in scaffold formulation, namely, chondroitin sulfate and hyaluronic acid. These biopolymers were derivatized with methacrylic moieties to undergo radical polymerization together with GMA. The morphology of the scaffolds was tuned to some extent by varying the volume fraction of the internal phase and to a larger extent by inducing a controlled destabilization of the precursor emulsion through the use of additives. In this way, scaffolds with 44% of the void volume attributable to voids with a diameter exceeding 60 microm and with 79% of the interconnect area attributable to interconnects with a diameter exceeding 20 microm in diameter could be successfully synthesized. To test whether the inclusion of ECM components into scaffold formulation resolves in an improvement of their biocompatibility with respect to GMA scaffolds, hepatocytes were seeded on both kinds of scaffolds and cell viability and function assays were carried out and compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号