首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
In this study, overexpression of GADD45a induced by furazolidone in HepG2 cells could arouse S‐phase cell cycle arrest, suppress cell proliferation, and increase the activities of cyclin D1, cyclin D3, and cyclin‐dependent kinase 6 (CDK6). To the opposite, GADD45a knockdown cells by RNAi could reduce furazolidone‐induced S‐phase cell cycle arrest, increase the cell viability, decrease the activities of cyclin D1, cyclin D3, and CDK6; however, cyclin‐dependent kinase 4 (CDK4) showed no change. Moreover, data from our current studies show that cyclin D1, cyclin D3, and CDK6 are target genes functioning at the downstream of the GADD45a pathway induced by furazolidone. These results demonstrate that the GADD45a pathway is partially responsible for the furazolidone‐induced S‐phase cell cycle arrest. GADD45a influences furazolidone‐induced S‐phase cell cycle arrest in human hepatoma G2 cells via cyclin D1, cyclin D3, and CDK6, but not CDK4.  相似文献   

2.
Benzo[a]pyrene (BaP) is an environment carcinogen that can enhance cell proliferation by disturbing the signal transduction pathways in cell cycle regulation. In this study, the effects of 2M4VP on cell proliferation, cell cycle and cell cycle regulatory proteins were studied in BaP-treated NIH 3T3 cells to establish the molecular mechanisms of 2M4VP as anti-proliferative agents. 2M4VP exerted a dose-dependent inhibitory effect on cell growth correlated with a G1 arrest. Analysis of G1 cell cycle regulators expression revealed 2M4VP increased expression of CDK inhibitor, p21Waf1/Cip1 and p15 INK4b, decreased expression of cyclin D1 and cyclin E, and inhibited kinase activities of CDK4 and CDK2. However, 2M4VP did not affect the expression of CDK4 and CDK2. Also, 2M4VP inhibited the hyper-phosphorylation of Rb induced by BaP. Our results suggest that 2M4VP induce growth arrest of BaP-treated NIH 3T3 cells by blocking the hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins.  相似文献   

3.
We examined concentration-dependent changes in cell cycle distribution and cell cycle-related proteins induced by butyric acid. Butyric acid enhanced or suppressed the proliferation of Jurkat human T lymphocytes depending on concentration. A low concentration of butyric acid induced a massive increase in the number of cells in S and G2/M phases, whereas a high concentration significantly increased the accumulation of cells in G2/M phase, suppressed the accumulation of cells in G0/G1 and S phases, and induced apoptosis that cell cycle-related protein expression in Jurkat cells treated with high levels of butyric acid caused a marked decrease in cyclin A, cyclin E, cyclin-dependent kinase 2 (CDK2), CDK4 and CDK6 protein levels in G0/G1 and S phases, with apoptosis induction, and a decrease in cyclin B, Cdc25c and p27KIP1 protein levels, as well as an increase in p21CIP1/WAF1 protein level, in the G2/M phase. Taken together, our results indicate that butyric acid has bimodal effects on cell proliferation and survival. The inhibition of cell growth followed by the increase in apoptosis induced by high levels of butyric acid were related to an increase in cell death in G0/G1 and S phases, as well as G2/M arrest of cells. Finally, these results were further substantiated by the expression profile of butyric acid-treated Jurkat cells obtained by means of cDNA array.  相似文献   

4.
Mechanisms of Cyclin-Dependent Kinase Inactivation by Progestins   总被引:8,自引:2,他引:6       下载免费PDF全文
The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. In breast cancer cells the predominant effect of synthetic progestins is long-term growth inhibition and arrest in G1 phase. Progestin-mediated growth arrest of T-47D breast cancer cells was preceded by inhibition of cyclin D1-Cdk4, cyclin D3-Cdk4, and cyclin E-Cdk2 kinase activities in vitro and reduced phosphorylation of pRB and p107. This was accompanied by decreases in the expression of cyclins D1, D3, and E, decreased abundance of cyclin D1- and cyclin D3-Cdk4 complexes, increased association of the cyclin-dependent kinase (CDK) inhibitor p27 with the remaining Cdk4 complexes, and changes in the molecular masses and compositions of cyclin E complexes. In control cells cyclin E eluted from Superdex 200 as two peaks of ~120 and ~200 kDa, with the 120-kDa peak displaying greater cyclin E-associated kinase activity. Following progestin treatment, almost all of the cyclin E was in the 200-kDa, low-activity form, which was associated with the CDK inhibitors p21 and p27; this change preceded the inhibition of cell cycle progression. These data suggest preferential formation of this higher-molecular-weight, CDK inhibitor-bound form and a reduced number of cyclin E-Cdk2 complexes as mechanisms for the decreased cyclin E-associated kinase activity following progestin treatment. Ectopic expression of cyclin D1 in progestin-inhibited cells led to the reappearance of the 120-kDa active form of cyclin E-Cdk2 preceding the resumption of cell cycle progression. Thus, decreased cyclin expression and consequent increased CDK inhibitor association are likely to mediate the decreases in CDK activity accompanying progestin-mediated growth inhibition.  相似文献   

5.
The present study examines the molecular mechanisms by which a member of a novel series of pyrrolo-1,5-benzoxazepines, PBOX-21, induces G1 arrest in 1321N1 cells. PBOX-21-induced G1 arrest is preceded by both a decrease in CDK2 kinase activity, which is critical for the G1/S transition, and a downregulation in cyclin D(3) protein expression levels, suggesting that these two events may be crucially involved in the mediation of the cell cycle arrest. The decrease in CDK2 activity may be due to an observed decrease in CDK2 protein levels following PBOX-21 treatment. Coinciding with the arrest is a reduction in the activity of CDK4, due to either the observed PBOX-21 induced downregulation in CDK4 expression, or a reduction in complex formation between cyclin D(3)-CDK4 leading to a decrease in the levels of active cyclin D(3)-CDK4 complexes with kinase activity. The level of CDK6 activity was also seen to be reduced following PBOX-21 treatment, also possibly due to a reduction in complex formation with cyclin D(3). However, this reduction in CDK6 kinase activity was not seen until after PBOX-21-induced G1 arrest has reached its maximum, and therefore may be viewed as a consequence of, and a method of maintaining the PBOX-21-induced arrest, rather than a cause. Also in parallel with the G1 arrest elicited by PBOX-21 is an upregulation in the universal CDK inhibitor, p21. Furthermore, the retinoblastoma protein (Rb), a substrate of CDK2 and CDK6, whose phosphorylation is necessary for cell cycle progression, becomes hypophosphorylated. These results indicate that PBOX-21 exerts its growth inhibitory effects through the modulation of the expression and activity of several key G1 regulatory proteins.  相似文献   

6.
7.
8.
The cyclin-dependent kinase (CDK) inhibitor p27 binds and inhibits the kinase activity of several CDKs. Here we report an analysis of the behavior and partners of p27 in Swiss 3T3 mouse fibroblasts during normal mitotic cell cycle progression, as well as in cells arrested at different stages in the cycle by growth factor deprivation, lovastatin treatment, or ultraviolet (UV) irradiation. We found that the level of p27 is elevated in cells arrested in G0 by growth factor deprivation or contact inhibition. In G0, p27 was predominantly monomeric, although some portion was associated with residual cyclin A.Cdk2. During G1, all of p27 was associated with cyclin D1.Cdk4 and was then redistributed to cyclin A.Cdk2 as cells entered S phase. The loss of the monomeric p27 pool as cyclins accumulate in G1 is consistent with the in vivo and in vitro data showing that p27 binds better to cyclin.CDK complexes than to monomeric CDKs. In growing cells, the majority of p27 was associated with cyclin D1 and the level of p27 was significantly lower than the level of cyclin D1. In cells arrested in G1 with lovastatin, cyclin D1 was degraded and p27 was redistributed to cyclin A.Cdk2. In contrast to p21 (which is a p27-related CDK inhibitor and is induced by UV irradiation), the level of p27 was reduced after UV irradiation, but because cyclin D1 was degraded more rapidly than p27, there was a transient increase in binding of p27 to cyclin A.Cdk2. These data suggest that cyclin D1.Cdk4 acts as a reservoir for p27, and p27 is redistributed from cyclin D1.Cdk4 to cyclin A.Cdk2 complexes during S phase, or when cells are arrested by growth factor deprivation, lovastatin treatment, or UV irradiation. It is likely that a similar principle of redistribution of p27 is used by the cell in other instances of cell cycle arrest.  相似文献   

9.
10.
Inhibition of S/G2 phase CDK4 reduces mitotic fidelity   总被引:2,自引:0,他引:2  
Cyclin-dependent kinase 4 (CDK4)/cyclin D has a key role in regulating progression through late G(1) into S phase of the cell cycle. CDK4-cyclin D complexes then persist through the latter phases of the cell cycle, although little is known about their potential roles. We have developed small molecule inhibitors that are highly selective for CDK4 and have used these to define a role for CDK4-cyclin D in G(2) phase. The addition of the CDK4 inhibitor or small interfering RNA knockdown of cyclin D3, the cyclin D partner, delayed progression through G(2) phase and mitosis. The G(2) phase delay was independent of ATM/ATR and p38 MAPK but associated with elevated Wee1. The mitotic delay was because of failure of chromosomes to migrate to the metaphase plate. However, cells eventually exited mitosis, with a resultant increase in cells with multiple or micronuclei. Inhibiting CDK4 delayed the expression of the chromosomal passenger proteins survivin and borealin, although this was unlikely to account for the mitotic phenotype. These data provide evidence for a novel function for CDK4-cyclin D3 activity in S and G(2) phase that is critical for G(2)/M progression and the fidelity of mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号