首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells of Dunaliella tertiolecta which had been grown in ordinaryair (low-CO2 cells) had high carbonic anhydrase (CA) activityon the cell surface and mainly utilized HCO3 for photosynthesis.When CA activity on the cell surface was inhibited by Diamoxor subtilisin, the cells utilized CO2. When bovine CA was added,the subtilisin-treated low-CO2 cells utilized mainly HCO3.When grown in air containing 2% CO2, the cells had low CA activityon the cell surface, and preferred CO2 to HCO3. Kineticanalysis of these results indicated that low-CO2 cells of D.tertiolecta absorb CO2 which was converted from HCO3via the CA located on the cell surface. (Received June 29, 1985; Accepted October 9, 1985)  相似文献   

2.
Hydrodictyon africanum can photosynthesize at high pH underconditions in which HCO3 rather than CO2 is the carbonspecies entering the cell. A passive entry of HCO3 seemsunlikely; a metabolic HCO3 pump is proposed. It is possiblethat such a pump is related to a light-dependent reaction specificto the use of HCO3. This reaction is dependent on photosystem2, but appears to be independent of ATP. These characteristicsare similar to those of active lightdependent Cl influx in H.africanum, and suggest a similar energy source for the two pumps.The HCO3 pump may be electrogenic.  相似文献   

3.
Three distinct mechanisms of HCO3- secretion in rat distal colon   总被引:1,自引:0,他引:1  
HCO3 secretion has long been recognized in the mammalian colon, but it has not been well characterized. Although most studies of colonic HCO3 secretion have revealed evidence of lumen Cl dependence, suggesting a role for apical membrane Cl/HCO3 exchange, direct examination of HCO3 secretion in isolated crypt from rat distal colon did not identify Cl-dependent HCO3 secretion but did reveal cAMP-induced, Cl-independent HCO3 secretion. Studies were therefore initiated to determine the characteristics of HCO3 secretion in isolated colonic mucosa to identify HCO3 secretion in both surface and crypt cells. HCO3 secretion was measured in rat distal colonic mucosa stripped of muscular and serosal layers by using a pH stat technique. Basal HCO3 secretion (5.6 ± 0.03 µeq·h–1·cm–2) was abolished by removal of either lumen Cl or bath HCO3; this Cl-dependent HCO3 secretion was also inhibited by 100 µM DIDS (0.5 ± 0.03 µeq·h–1·cm–2) but not by 5-nitro-3-(3-phenylpropyl-amino)benzoic acid (NPPB), a Cl channel blocker. 8-Bromo-cAMP induced Cl-independent HCO3 secretion (and also inhibited Cl-dependent HCO3 secretion), which was inhibited by NPPB and by glibenclamide, a CFTR blocker, but not by DIDS. Isobutyrate, a poorly metabolized short-chain fatty acid (SCFA), also induced a Cl-independent, DIDS-insensitive, saturable HCO3 secretion that was not inhibited by NPPB. Three distinct HCO3 secretory mechanisms were identified: 1) Cl-dependent secretion associated with apical membrane Cl/HCO3 exchange, 2) cAMP-induced secretion that was a result of an apical membrane anion channel, and 3) SCFA-dependent secretion associated with an apical membrane SCFA/HCO3 exchange. chloride/bicarbonate exchange; short-chain fatty acid/bicarbonate exchange; anion channel; pH stat  相似文献   

4.
Extracellular and intracellular acid-base balance is necessaryfor the maintenance of normal metabolic processes. The primarysource of acid is metabolically produced CO2, and the CO2/HCO3system is the most significant buffer. The regulation of acid-basebalance is complex, involving the interaction between respiratorygas exchange and ion transport. In aquatic crustaceans respirationis governed by the need to extract oxygen from water, an O2-poormedium; thus, acid-base balance is maintained primarily throughion transport mechanisms. These mechanisms include Na+/H+ andCl/HCO3 exchange processes that are sensitiveto the extracellular acid-base status of the animal. In marinecrabs, ion regulation and acid-base balance are accomplishedby the posterior gills, while in freshwater species all gillsand the antennal gland perform these functions. Intracellularacid-base balance appears to be maintained primarily by iontransport across the cell membrane. Hemolymph pH varies inverselywith acclimation temperature and salinity. In both cases Pco2remains nearly constant, and the pH change is a result of changesin hemolymph HCO3 concentrations brought about by ionexchange mechanisms. Environmental hypercapnia or hyperoxiainduces a repiratory acidosis characterized by increased Pco2,low pH, and elevated HCO3; this is partially compensatedfor by ion exchange processes that bring about a further increasein hemolymph HCO3. Exercise causes a mixed respiratoryand metabolic acidosis with compensation via H+ ion excretionand hyperventilation.  相似文献   

5.
Corneal transparency and hydration control are dependent on HCO3 transport properties of the corneal endothelium. Recent work (13) suggested the presence of an apical 1Na+-3HCO3 cotransporter (NBC1) in addition to a basolateral 1Na+-2HCO3 cotransporter. We examined whether the NBC1 cotransporter contributes significantly to basolateral or apical HCO3 permeability and whether the cotransporter participates in transendothelial net HCO3 flux in cultured bovine corneal endothelium. NBC1 protein expression was reduced using small interfering RNA (siRNA). Immunoblot analysis showed that 5–15 nM siRNA decreased NBC1 expression by 80–95%, 4 days posttransfection. Apical and basolateral HCO3 permeabilities were determined by measuring the rate of pHi change when HCO3 was removed from the bath under constant pH or constant CO2 conditions. Using either protocol, we found that cultures treated with NBC1 siRNA had sixfold lower basolateral HCO3 permeability than untreated or siCONTROL siRNA-treated cells. Apical HCO3 permeability was unaffected by NBC1 siRNA treatment. Net non-steady-state HCO3 flux was 0.707 ± 0.009 mM·min–1·cm2 in the basolateral-to-apical direction and increased to 1.74 ± 0.15 when cells were stimulated with 2 µM forskolin. Treatment with 5 nM siRNA decreased basolateral-to-apical flux by 67%, whereas apical-to-basolateral flux was unaffected, significantly decreasing net HCO3 flux to 0.236 ± 0.002. NBC1 siRNA treatment or 100 µM ouabain also eliminated steady-state HCO3 flux, as measured by apical compartment alkalinization. Collectively, reduced basolateral HCO3 permeability, basolateral-to-apical fluxes, and net HCO3 flux as a result of reduced expression of NBC1 indicate that NBC1 plays a key role in transendothelial HCO3 flux and is functional only at the basolateral membrane. corneal endothelium; sodium bicarbonate cotransporter; small interfering RNA; bicarbonate transport  相似文献   

6.
Competitive inhibition of the HCO3 transport site, atthe plasmalemma of Chara coraUina, by the CO2–3 ion isdemonstrated. This CO2–3 inhibition was used to demonstratethat HCO3 ions enter the cell by facilitated ‘diffusion’when the HCO3 transport system has been inactivated bytreatment with 10 mM K+. Use of CO2–3 as a HCO3analogue is limited, however, because of the necessity to employsolutions of high pH. Inhibition was not observed in the presenceof a range of organic and inorganic acid anions. These resultsdemonstrate the stereo-specific nature of the HCO3 bindingsite. A variety of amino compounds were found to inhibit H14CO3influx. Inhibition appeared to be competitive, being completelyrelieved at higher substrate (HCO3) concentrations. Asimple correlation was not found between the degree of inhibitionand the concentration of neutral base. A combination of thepresence of neutral base and experimental pH values of at least8·0 was required to produce the reactive species thatinhibited HCO3 transport. This species is consideredto be the amino carbamate. These results are discussed withrespect to further HCO3 analogue experiments.  相似文献   

7.
Low concentrations of ammonia and methylamine greatly increaseCl influx into Chara corallina. Both amines have theirmaximum effect at pH 6.5–7.5. The amine stimulation ofCl influx is small below about pH 5.5. Above pH 8.5 theremay be inhibition of influx by amines. Concentrations of 10–25µM ammonia are sufficient to cause the maximum stimulationof Cl influx; the corresponding methylamine concentrationsare 0.1–0.2 mM. It is concluded that entry of amine cations(NH4$ and CH3NH3$), rather than unionized bases (NH3 and CH3NH2),causes Cl transport to be increased. Increases in rates of Cl transport are not necessarilyaccompanied by effects on HCO3$ assimilation and OH efflux.Measurements of localized pH differences at the cell surfaceand of circulating electric currents in the bathing solutionshow that these phenomena are only significantly affected byammonia at or above 50 µM and by methylamine at or above1.0 mM. The significance of the effects of amines is assessedin relation to current ideas about transport of Cl, HCO3,and OH.  相似文献   

8.
Salinity-induced Malate Accumulation in Chara   总被引:3,自引:0,他引:3  
Ion absorption by Chara corallina from solutions containingpredominantly KC1 or RbCl at up to 100 mol m–3 resultedin accumulation of salts and turgor regulation. Turgor regulationdid not occur in solutions containing Na+ or Li+salts. Duringion absorption from various salts of K+ and Rb+ vacuolar cationconcentration exceeded Cl concentration. This differencewas shown to be balanced by the synthesis and accumulation ofmalate. Vacuolar malate concentration reached 48 mol m3,with accumulation occurring at rates of up to 0.45 mol m–3h–1. Malate accumulation was inhibited by low externalpH and was dependent upon external HCO3 concentration.The synthesis of malic acid and its subsequent dissociationimposed a severe acid load on the cell. Biophysical regulationof cellular pH was achieved by a H+efflux at a rate of about40 nmol m–2 s–1from the cell. The results presentedargue against cytoplasmic Cl, HCO3 or pH regulatingmalate accumulation in Chara and it is suggested that malatetransport across the tonoplast may regulate malate accumulation. Key words: Malate, Chara corallina, pH regulation, salinity  相似文献   

9.
Several studies suggest the involvement of Na+ and HCO3 transport in the formation of cerebrospinal fluid. Two Na+-dependent HCO3 transporters were recently localized to the epithelial cells of the rat choroid plexus (NBCn1 and NCBE), and the mRNA for a third protein was also detected (NBCe2) (Praetorius J, Nejsum LN, and Nielsen S. Am J Physiol Cell Physiol 286: C601–C610, 2004). Our goal was to immunolocalize the NBCe2 to the choroid plexus by immunohistochemistry and immunogold electronmicroscopy and to functionally characterize the bicarbonate transport in the isolated rat choroid plexus by measurements of intracellular pH (pHi) using a dual-excitation wavelength pH-sensitive dye (BCECF). Both antisera derived from COOH-terminal and NH2-terminal NBCe2 peptides localized NBCe2 to the brush-border membrane domain of choroid plexus epithelial cells. Steady-state pHi in choroidal cells increased from 7.03 ± 0.02 to 7.38 ± 0.02 (n = 41) after addition of CO2/HCO3 into the bath solution. This increase was Na+ dependent and inhibited by the Cl and HCO3 transport inhibitor DIDS (200 µM). This suggests the presence of Na+-dependent, partially DIDS-sensitive HCO3 uptake. The pHi recovery after acid loading revealed an initial Na+ and HCO3-dependent net base flux of 0.828 ± 0.116 mM/s (n = 8). The initial flux in the presence of CO2/HCO3 was unaffected by DIDS. Our data support the existence of both DIDS-sensitive and -insensitive Na+- and HCO3-dependent base loader uptake into the rat choroid plexus epithelial cells. This is consistent with the localization of the three base transporters NBCn1, Na+-driven Cl bicarbonate exchanger, and NBCe2 in this tissue. bicarbonate metabolism; BCECF; cerebrospinal fluid; acid/base transport; ammonium prepulse  相似文献   

10.
Inorganic carbon transport during photosynthesis of cyanobacteriumAnabaena variabilis grown under ordinary air was investigatedby supplying 14CO2 or H14CO3 solution to three differentstrains. Both CO2 and HCO3 were accumulated within thealgal cells. In the cell suspension from which dissolved inorganiccarbon had been depleted by pre-illumination, CO2 was transportedand accumulated faster than HCO3. When the concentrationof HCO3 injected into the cell suspension of A. variabilisM3 was 25 times as high as that of CO2 (the expected ratio atequilibrium at pH 7.8), the initial rates of fixation of bothinorganic carbon species were practically the same. On the otherhand, when 14CO2 or H14CO3 was added under steady statephotosynthetic conditions, both carbon species were transportedat similar rates. The ratio of fixed to transported carbon measuredafter the initial 5 s was only 23–27% regardless of thecarbon species supplied. This percentage is much lower thanthat reported for Chlorella cells. 1 To whom reprint requests should be addressed (Received June 30, 1986; Accepted December 16, 1986)  相似文献   

11.
Mass spectrometry has been used to investigate the transportof CO2 in the freshwater diatom Navicula pelliculosa. The timecourseof CO2 formation in the dark after addition of 100 mmol m–3dissolved inorganic carbon (DIC) to cell suspensions showedthat no external carbonic anhydrase (CA) was present in thesecells. Upon illumination, cells pre-incubated at pH 75 with100 mmol m–3 DIC, removed almost all free CO2 from themedium at an initial rate of 285 µmol CO2 mg–1Chl h–1. Equilibrium between HCO3 and CO2 in themedium occurred rapidly upon addition of bovine CA, showingthat CO2 depletion resulted from a selective uptake of CO2 ratherthan an uptake of all inorganic carbon species. However, photosyntheticO2 evolution rate remained constant after CO2 had been depletedfrom the medium indicating that photosynthesis is sustainedprimarily by active HCO3 uptake. Treatment of cells with2-iodoacetamide (83 mol m–3) completely inhibited CO2fixation but had little effect on CO2 transport since initialrates of CO2 depletion were about 81% that of untreated cells.Transfer of iodoacetamide-treated cells to the dark caused arapid increase in the CO2 concentration in the medium largelydue to the efflux of the unfixed intracellular DIC pool whichwas found to be about 194 times the concentration of that inthe external medium. These results indicate that Navicula pelliculosaactively takes up molecular CO2 against a concentration gradientby a process distinct from HCO3 transport. Key words: Dissolved inorganic carbon, carbonic anhydrase, bicarbonate transport, CO2 transport, mass spectrometry  相似文献   

12.
Resting or basal intracellular pH (pHi) measured in cultured human syncytiotrophoblast cells was 7.26 ± 0.04 (without HCO3) or 7.24 ± 0.03 (with HCO3). Ion substitution and inhibitor experiments were performed to determine whether common H+-transporting species were operating to maintain basal pHi. Removal of extracellular Na+ or Cl or addition of amiloride or dihydro-4,4'-diisothiocyanatostilbene-2,2'-disulfonate (H2DIDS) had no effect. Acidification with the K+/H+ exchanger nigericin reduced pHi to 6.25 ± 0.15 (without HCO3) or 6.53 ± 0.10 (with HCO3). In the presence of extracellular Na+, recovery to basal pHi was prompt and occurred at similar rates in the absence and presence of HCO3. Ion substitution and inhibition experiments were also used to identify the species mediating the return to basal pHi after acidification. Recovery was inhibited by removal of Na+ or addition of amiloride, whereas removal of Cl and addition of H2DIDS were ineffective. Addition of the Na+/H+ exchanger monensin to cells that had returned to basal pHi elicited a further increase in pHi to 7.48 ± 0.07. Analysis of recovery data showed that there was a progressive decrease in pH per minute as pHi approached the basal level, despite the continued presence of a driving force for H+ extrusion. These data show that in cultured syncytial cells, in the absence of perturbation, basal pHi is preserved despite the absence of active, mediated pH maintenance. They also demonstrate that an Na+/H+ antiporter acts to defend the cells against acidification and that it is the sole transporter necessary for recovery from an intracellular acid load. sodium/hydrogen antiporter; pH regulation; fluorescence; 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein  相似文献   

13.
An experimental system was designed to test the obligate couplingbetween HCO3 and OH fluxes (i. e. a ‘Mitchell-type’antiporter) proposed by Lucas and Smith (1973). The resultsof these experiments demonstrated categorically that the OHefflux process can function in the absence of exogenous HCO3at the actual OH efflux site. Hence, the obligate couplinghypothesis is invalid. It is proposed that HCO3 and OHare transported across the plasmalemma ‘independently’,on quite distinct carriers. It is possible, therefore, thatthese fluxes contribute towards determining the electrical propertiesof this membrane when the bathing solution pH value is 6.5.It was also found that HCO3 can be transported acrossthe dark segment of a partly illuminated cell. The observedrates were always much less than those obtained in the illuminatedcell segment. The significance of this result is discussed.  相似文献   

14.
Photosynthetic Carbon Sources of Stream Macrophytes   总被引:15,自引:0,他引:15  
Rates of photosynthesis of four submerged stream macrophyteswere examined under varying pH and composition of inorganiccarbon species. Callitriche stagnatis and Sparganium simplexused only CO2 for photosynthesis. Potamogeton crispus and P.pectinatus used HCO3 in addition to CO2, but with much lowerefficiency. The photosynthetic rates at air equilibrium anda total inorganic carbon concentration of 5.0 mM were 2–3times lower than maximum rates at CO2 saturation for the HCO3users and 10–14 times lower for the CO2 users. The CO2compensation point of entire plants of Callitriche (2.5 µM)and Sparganium (6.0µM) was well below the equilibriumconcentration (15 µM). and the low saturation points (250–500µM) also pointed to efficient use of CO2. Callitricheand Sparganium compete successfully with HCO3 users inhardwater streams, which have a higher exchange and generationcapacity of CO2 than stagnant and more soft waters. Rates ofphotosynthesis of Potamogeton crispus and P. pectinatus decreasedat high pH. Depending on the two alternative hypotheses forHCO3use, this decline can be explained by CO3––inhibition of HCO3 uptake or by increasing capacity tobuffer H+efflux from the plant. Habitats subject to high pH,e. g. small ponds with dense vegetation, may have a strong selectionfor efficient mechanisms of HCO3 use. Key words: Photosynthesis, Macrophytes, Carbon-source  相似文献   

15.
The dynamic and steady state aspects of the pH and electricpotential () profiles, that develop in the experimental mediumin association with the photosynthetic assimilation of exogenousHCO3 by internodal cells of Chara corallina, were investigated.A theoretical treatment is presented which explains the originof the phenomenon. This theory was tested by comparing thepH and values generated by a numerical analysis model (whichsimulated the experimental system) against experimental data.Verification of our model indicates that the steady state ionicfluxes, associated with HCO3 assimilation (HCO3,OH, and CO23, are not significantly influencedby the electric potential gradients. The main driving forcecausing the observed fluxes is the diffusion gradient associatedwith the respective ion. By simultaneous measurement of and pH, at the centre of analkaline band, a direct correlation was established betweenlight-activation and dark-deactivation of the OH transportsystem and the light-mediated changes in at the cell surface.In addition, under steady state conditions, an almost perfectcorrelation was observed between alkaline band pH centres andthe negative electric potential maxima. These data offer strongsupport for the hypothesis that OHefflux, in this system,is an electrogenic process. Based on our present analysis, the profile along the cell indicatesthat, in terms of the spatial aspect of HCO3 transport,the rate of HCO3 influx varies quite dramatically alongthe length of an internodal cell. This aspect is discussed interms of the cellular integration of OH and HCO3transport in this species.  相似文献   

16.
In cells of cyanobacterium Anabaena variabilis grown under ordinaryair (low-CO2 cells), the transport of both CO2 and HCO3was significantly enhanced by Na+. This effect was pronouncedas the external pH increased. When low-CO2 cells were treatedwith an inhibitor of carbonic anhydrase (CA), only CO2 transportbut not HCO3 transport, was inhibited. The initial rateof photosynthetic carbon fixation as a function of the concentrationof internal inorganic carbon (IC) was practically the same irrespectiveof whether CO2 or HCO3 was externally supplied. Theseresults suggest that IC is actively transported through theplasma membrane in a form of HCO3 probably by some transporterand that the transmembrane Na+ gradient is involved in thisIC transport system. Free CO2 may be hydrated by CA to HCO3and then transported to the cells by this transporter. On the other hand, CO2 is actively taken up by cells grown withair containing 5% CO2 (high-CO2 cells) though the enhancingeffect of Na+ was much smaller in high- CO2 cells than in low-CO2cells. The initial rate of fixation as a function of internal IC concentrationindicated that the rate of the carboxylation reaction of accumulatedIC is higher in I0W-CO2 cells than in high-CO2 cells. The studieswith ethoxyzolamide indicated that even in low-CO2 cells, CAdoes not function inside Anabaena cells. These results suggestthat inside the low-CO2 cells of Anabaena, some mediator(s)facilitates the transport of IC to RuBPCase. (Received January 23, 1987; Accepted April 24, 1987)  相似文献   

17.
Human NBC3 is an electroneutral Na+/HCO3 cotransporter expressed in heart, skeletal muscle, and kidney in which it plays an important role in HCO3 metabolism. Cytosolic enzyme carbonic anhydrase II (CAII) catalyzes the reaction CO2 + H2O HCO3 + H+ in many tissues. We investigated whether NBC3, like some Cl/HCO3 exchange proteins, could bind CAII and whether PKA could regulate NBC3 activity through modulation of CAII binding. CAII bound the COOH-terminal domain of NBC3 (NBC3Ct) with Kd = 101 nM; the interaction was stronger at acid pH. Cotransfection of HEK-293 cells with NBC3 and CAII recruited CAII to the plasma membrane. Mutagenesis of consensus CAII binding sites revealed that the D1135-D1136 region of NBC3 is essential for CAII/NBC3 interaction and for optimal function, because the NBC3 D1135N/D1136N retained only 29 ± 22% of wild-type activity. Coexpression of the functionally dominant-negative CAII mutant V143Y with NBC3 or addition of 100 µM 8-bromoadenosine to NBC3 transfected cells reduced intracellular pH (pHi) recovery rate by 31 ± 3, or 38 ± 7%, respectively, relative to untreated NBC3 transfected cells. The effects were additive, together decreasing the pHi recovery rate by 69 ± 12%, suggesting that PKA reduces transport activity by a mechanism independently of CAII. Measurements of PKA-dependent phosphorylation by mass spectroscopy and labeling with [-32P]ATP showed that NBC3Ct was not a PKA substrate. These results demonstrate that NBC3 and CAII interact to maximize the HCO3 transport rate. Although PKA decreased NBC3 transport activity, it did so independently of the NBC3/CAII interaction and did not involve phosphorylation of NBC3Ct. pH regulation; bicarbonate transport; metabolon  相似文献   

18.
Millhouse, J. and Strother, S. 1987. Further characteristicsof salt-dependent bicarbonate use by the seagrass Zostera muelleri.—J.exp. Bot. 38: 1055–1068. The contribution of HCO3to photosynthetic O2 evolutionin the seagrass Zostera muelleri Irmisch ex Aschers. increasedwith increasing salinity of the bathing seawater when the inorganiccarbon concentration was kept constant. K1/2 (seawater salts)for HCO3 -dependent photosynthesis was 66% of seawatersalinity. Both short- and long-term pretreatment at low salinitiesstimulated photosynthesis in full strength seawater. Twentyfour hours pre-incubation of seagrass plants in 3·0 molm–3 NaHCO3 resulted in increased photosynthesis at allsalinities, apparently due to stimulation of HCO3 use(K1/2 (seawater salts) = 26%). Vmax (HCO3) was not affectedby low salinity pretreatment. The kinetics of HCO3 stimulationby the major seawater cations was investigated. Ca2+ was themost effective cation with the highest Vmax (HCO3) andwith K1/2(Ca2+) = 14 mol m–3. Mg2+ was also very effectiveat less than 50 mol m–3 but higher concentrations wereinhibitory. This inhibition cannot be accounted for solely byprecipitation of MgCO3. Na+ and K+ were both capable of stimulatingHCO3 use. Stimulation was in two distinct parts. Up to500 mol m–3, both citrate and chloride salts gave similarresults (K1/2(Na+) 81 mol m–3, Vmax(HCO3) 0·26µmol O2 mg–1 chl min–1), but use of citratesalts above 500 mol m–2 caused a second stimulation ofHCO3 use (K1/2(Na+) 830 mol m–3, Vmax(HCO3)0·68 µmol O2 mg–1 chl min–1). Vmax(HCO3)for the second-phase Na+ or K+ stimulation was of the same orderas for Ca2+-stimulated HCO3 use. To further characterizesalt-dependent HCO3 use, the sensitivity of photosynthesisto Tris and TES buffers was investigated. The effects of Trisappear to be due to the action of Tris+ causing stimulationof HCO3 -dependent photosynthesis in the absence of salt,but inhibition of HCO3 use in saline media. TES has noeffect on photosynthesis. External carbonic anhydrase, althoughimplicated in salt-dependent HCO3 use in Z. muelleri,could not be detected in whole leaves. Key words: Zostera muelleri, HCO3 use, salinity  相似文献   

19.
When Chlorella vulgaris 11h, Chlorella vulgaris C-l, Chlamydomonasreinhardtii, Chlamydomonas moewusii, Scenedesmus obliquus, orDunaliella tertiolecta were illuminated in with 0.5 mM NaHCO3,the pH of the medium increased in a few minutes from 6 to about9 or 10. The alkalization, which was accompanied by O2 evolution,was dependent on light, external dissolved inorganic carbon(DIC) as HCO-3, and algae grown or adapted to a low, air-levelCO2 in order to develop a DIC concentrating mechanism. Therewas little pH increase by algae without a DIC concentratingprocess from growth on 3% CO2 in air. Photosynthetic O2 evolutionwithout alkalization occurred using either internal DIC or externalCO2 at acidic pH. The PH increase stopped between pH 9 to 10,but the alkalization would restart upon re-acidification betweenpH 6 and 8. Alkalization was suppressed by the carbonic anhydraseinhibitors, acetazolamide, ethoxyzolamide or carbon oxysulfide.The pH increase appeared to be the consequence of the externalconversion of HCO3 into CO2 plus OH during photosynthesisby cells with a high affinity for CO2 uptake. Cells grown onhigh CO2 to suppress the DIC pump, when given low levels ofHCO3 in the light, acidified the medium from pH 10 to7. Air adapted Scenedesmus cells with a HCO3 pump, aswell as a CO2 pump, alkalized the medium very rapidly in thelight to a pH of over 10, as well as slower in the dark or inthe light with DCMU or without external DIC and O2 evolution.Alkalization of the medium during photosynthetic DIC uptakeby algae has been considered to be part of the global carboncycle for converting H2CO3 to HCO3 and for the formationof carbonate salts by calcareous algae from the alkaline conversionof bicarbonate to carbonate. These processes seem to be a consequenceof the algal CO2 concentrating process. 1Present address: Department of Biology, Faculty of Science,Niigata University, Niigata, 950-21 Japan.  相似文献   

20.
The inhibitory control of pancreatic ductal HCO3 secretion may be physiologically important in terms of limiting the hydrostatic pressure developed within the ducts and in terms of switching off pancreatic secretion after a meal. Substance P (SP) inhibits secretin-stimulated HCO3 secretion by modulating a Cl-dependent HCO3 efflux step at the apical membrane of the duct cell (Hegyi P, Gray MA, and Argent BE. Am J Physiol Cell Physiol 285: C268–C276, 2003). In the present study, we have shown that SP is present in periductal nerves within the guinea pig pancreas, that PKC mediates the effect of SP, and that SP inhibits an anion exchanger on the luminal membrane of the duct cell. Secretin (10 nM) stimulated HCO3 secretion by sealed, nonperfused, ducts about threefold, and this effect was totally inhibited by SP (20 nM). Phorbol 12,13-dibutyrate (PDBu; 100 nM), an activator of PKC, reduced basal HCO3 secretion by 40% and totally blocked secretin-stimulated secretion. In addition, bisindolylmaleimide I (1 nM to 1 µM), an inhibitor of PKC, relieved the inhibitory effect of SP on secretin-stimulated HCO3 secretion and also reversed the inhibitory effect of PDBu. Western blot analysis revealed that guinea pig pancreatic ducts express the -, I-, -, -, -, -, -, and µ-isoforms of PKC. In microperfused ducts, luminal H2DIDS (0.5 mM) caused intracellular pH to alkalinize and, like SP, inhibited basal and secretin-stimulated HCO3 secretion. SP did not inhibit secretion further when H2DIDS was present in the lumen, suggesting that SP and H2DIDS both inhibit the activity of an anion exchanger on the luminal membrane of the duct cell. pancreas; Cl/HCO3 exchanger; inhibition; epithelium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号