首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We have developed a novel allele-specific primer elongation protocol using a DNA polymerase on oligonucleotide chips. Oligonucleotide primers carrying polymorphic sites at their free 3'end were covalently bound to glass slides. The generation of single-stranded targets of genomic DNA containing single nuclotide polymorphisms (SNPs) to be typed was achieved by an asymmetric PCR reaction or exonuclease treatment of phosphothioate (PTO)-modified PCR products. In the presence of DNA polymerase and all four dNTPs, with Cy3-dUTP replacing dTTP, allele-specific extension of the immobilized primers took place along a stretch of target DNA sequence. The yield of elongated products was increased by repeated reaction cycles. We performed multiplexed assays with many small DNA targets, or used single targets of up to 4.4 kb mitochondrial DNA (mtDNA) sequence to detect multiple SNPs in one reaction. The latter approach greatly simplifies preamplification of SNP-containing regions, thereby providing a framework for typing hundreds of mtDNA polymorphisms.  相似文献   

2.
BackgroundWe had sequenced 329 Caucasian samples in Hypervariable Region 1 (HVR 1) and found that they belong to eleven different mitochondrial DNA (mtDNA) haplotypes. The sample set was further analysed by an mtDNA assay examining 32 single nucleotide polymorphisms (SNPs) for haplogroup discrimination.In a validation study on 160 samples of different origin it was shown that these SNPs were able to discriminate between the evolved superhaplogroups worldwide (L, M and N) and between the nine most common Caucasian haplogroups (H, I, J, K, T, U, V, W and X).ResultsThe 32 mtDNA SNPs comprised 42 different SNP haplotypes instead of only eleven haplotypes after HVR 1 sequencing. The assay provided stable results in a range of 5 ng genomic DNA down to virtually no genomic DNA per reaction. It was possible to detect samples of African, Asian and Eurasian ancestry, respectively.DiscussionThe 32 mtDNA SNP assay is a helpful adjunct to further distinguish between identical HVR 1 sequences of Caucasian origin. Our results suggest that haplogroup prediction using HVR 1 sequencing provides instable results. The use of coding region SNPs for haplogroup assignment is more suited than using HVR 1 haplotypes.  相似文献   

3.
Accurate and fast genotyping of single nucleotide polymorphisms (SNPs) is of significant scientific importance for linkage and association studies. We report here an automated fluorescent method we call multiplex automated primer extension analysis (MAPA) that can accurately genotype multiple known SNPs simultaneously. This is achieved by substantially improving a commercially available protocol (SNaPshot). This protocol relies on the extension of a primer that ends one nucleotide 5'of a given SNP with fluorescent dideoxy-NTPs (minisequencing), followed by analysis on an ABI PRisMS 377 Semi-Automated DNA Sequencer Our modification works by multiplexing the initial reaction that produces the DNA template for primer extension and/or multiplexing several primers (corresponding to several SNPs) in the same primer extension reaction. Then, we run each multiplexed reaction on a single gel lane. We demonstrate that MAPA can be used to genotype up to four SNPs simultaneously, even in compound heterozygote samples, with complete accuracy (based on concordance with sequencing results). We also show that primer design, unlike the DNA template purification method, can significantly affect genotyping accuracy, and we suggest useful guidelines for quick optimization.  相似文献   

4.
Advances in technologies for identifying genetic polymorphisms rapidly and accurately will dramatically accelerate the discovery of disease-related genes. Among a variety of newly described methods for rapid typing of single-nucleotide polymorphisms (SNPs), gene detection using DNA microarrays is gradually achieving widespread use. This method involves the use of short (11- to 13-mer) allele-specific oligonucleotides. This method allows simultaneous analysis of many SNPs in DNAs from a large number of individuals, in a single experiment. In this work, we evaluated the accuracy of a new microarray-based short allele-specific oligonucleotide (ASO) hybridization method. There is a 96-well formatted array on a single plate, in which up to 256 spots are included in each well. Fluorescent probes for our experiments were produced by multiplex PCR amplification often target SNP-containing regions. We genotyped 192 individuals across a panel of ten single base variations, which included an insertion/deletion polymorphism. For comparison, we genotyped the same individuals for the same SNPs by the method of single-base extension with fluorescence detection. The typing accuracies of the microarray-based PCR-ASO and single-base extension methods were calculated as 99.9% and 99.1%, respectively, on the basis of genotyping results determined by direct sequencing. We conclude that the microarray-based hybridization method using short ASO probes represents a potential breakthrough technology for typing large numbers of SNPs rapidly and efficiently.  相似文献   

5.
This study introduces a DNA microarray-based genotyping system for accessing single nucleotide polymorphisms (SNPs) directly from a genomic DNA sample. The described one-step approach combines multiplex amplification and allele-specific solid-phase PCR into an on-chip reaction platform. The multiplex amplification of genomic DNA and the genotyping reaction are both performed directly on the microarray in a single reaction. Oligonucleotides that interrogate single nucleotide positions within multiple genomic regions of interest are covalently tethered to a glass chip, allowing quick analysis of reaction products by fluorescence scanning. Due to a fourfold SNP detection approach employing simultaneous probing of sense and antisense strand information, genotypes can be automatically assigned and validated using a simple computer algorithm. We used the described procedure for parallel genotyping of 10 different polymorphisms in a single reaction and successfully analyzed more than 100 human DNA samples. More than 99% of genotype data were in agreement with data obtained in control experiments with allele-specific oligonucleotide hybridization and capillary sequencing. Our results suggest that this approach might constitute a powerful tool for the analysis of genetic variation.  相似文献   

6.
An improved approach for increasing the multiplex level of single nucleotide polymorphism (SNP) typing by adapter ligation-mediated allele-specific amplification (ALM-ASA) has been developed. Based on an adapter ligation, each reaction requires n allele-specific primers plus an adapter-specific primer that is common for all SNPs. Thus, only n+1 primers are used for an n-plex PCR amplification. The specificity of ALM-ASA was increased by a special design of the adapter structure and PCR suppression. Given that the genetic polymorphisms in the liver enzyme cytochrome P450 CYP2D6 (debrisoquine 4-hydroxylase) have profound effects on responses of individuals to a particular drug, we selected 17 SNPs in the CYP2D6 gene as an example for the multiplex SNP typing. Without extensive optimization, we successfully typed 17-plex SNPs in the CYP2D6 gene by ALM-ASA. The results for genotyping 70 different genome samples by the 17-plex ALM-ASA were completely consistent with those obtained by both Sanger's sequencing and PCR restriction fragment length polymorphism (PCR-RFLP) analysis. ALM-ASA is a potential method for SNP typing at an ultra-low cost because of a high multiplex level and a simple optimization step for PCR. High-throughput SNP typing could be readily realized by coupling ALM-ASA with a well-developed automation device for sample processing.  相似文献   

7.
Mitochondrial DNA (mtDNA) haplogroups are valuable for investigations in forensic science, molecular anthropology, and human genetics. In this study, we developed a custom panel of 61 mtDNA markers for high-throughput classification of European, African, and Native American/Asian mitochondrial haplogroup lineages. Using these mtDNA markers, we constructed a mitochondrial haplogroup classification tree and classified 18,832 participants from the National Health and Nutrition Examination Surveys (NHANES). To our knowledge, this is the largest study to date characterizing mitochondrial haplogroups in a population-based sample from the United States, and the first study characterizing mitochondrial haplogroup distributions in self-identified Mexican Americans separately from Hispanic Americans of other descent. We observed clear differences in the distribution of maternal genetic ancestry consistent with proposed admixture models for these subpopulations, underscoring the genetic heterogeneity of the United States Hispanic population. The mitochondrial haplogroup distributions in the other self-identified racial/ethnic groups within NHANES were largely comparable to previous studies. Mitochondrial haplogroup classification was highly concordant with self-identified race/ethnicity (SIRE) in non-Hispanic whites (94.8 %), but was considerably lower in admixed populations including non-Hispanic blacks (88.3 %), Mexican Americans (81.8 %), and other Hispanics (61.6 %), suggesting SIRE does not accurately reflect maternal genetic ancestry, particularly in populations with greater proportions of admixture. Thus, it is important to consider inconsistencies between SIRE and genetic ancestry when performing genetic association studies. The mitochondrial haplogroup data that we have generated, coupled with the epidemiologic variables in NHANES, is a valuable resource for future studies investigating the contribution of mtDNA variation to human health and disease.  相似文献   

8.
Mitochondria are central eukaryotic organelles in cellular metabolism and ATP production. Mitochondrial DNA (mtDNA) alterations have been implicated in the development of colorectal cancer (CRC). However, there are few reports on the association between mtDNA haplogroups or single nucleotide polymorphisms (SNPs) and the risk of CRC. The mtDNA of 286 Northern Han Chinese CRC patients were sequenced by next-generation sequencing technology. MtDNA data from 811 Han Chinese population controls were collected from two public data sets. Then, logistic regression analysis was used to determine the effect of mtDNA haplogroup or SNP on the risk of CRC. We found that patients with haplogroup M7 exhibited a reduced risk of CRC when compared to patients with other haplogroups (odds ratio [OR] = 0.532, 95% confidence interval [CI] = 0.285–0.937, p = 0.036) or haplogroup B (OR = 0.477, 95% CI = 0.238–0.916, p = 0.030). Furthermore, haplogroup M7 was still associated with the risk of CRC when the validation and combined control cohort were used. In addition, several haplogroup M7 specific SNPs, including 199T>C, 4071C>T and 6455C>T, were significantly associated with the risk of CRC. Our results indicate the risk potential of mtDNA haplogroup M7 and SNPs in CRC in Northern China.  相似文献   

9.
Detecting alleles that confer small increments in susceptibility to disease will require large-scale allelic association studies of single-nucleotide polymorphisms (SNPs) in candidate, or positional candidate, genes. However, current genotyping technologies are one to two orders of magnitude too expensive to permit the analysis of thousands of SNPs in large samples. We have developed and thoroughly validated a highly accurate protocol for SNP allele frequency estimation in DNA pools based upon the SNaPshot (Applied Biosystems) chemistry adaptation of primer extension. Using this assay, we were able to estimate the difference in allele frequencies between pooled cases and controls (Delta) with a mean error of 0.01. Moreover, when we genotyped seven different SNPs in a single multiplex reaction, the results were similar, with a mean error for Delta of 0.008. The assay performed well for alleles of low frequency alleles (f approximately 0.05) and was accurate even with relatively poor quality DNA template extracted from mouthwashes. Our assay conditions are generalisable, universal, robust and, therefore, for the first time, permit high-throughput association analysis at a realistic cost.  相似文献   

10.
We describe a simple protocol to genotype single nucleotide polymorphisms (SNPs), which combines allele‐specific polymerase chain reaction (PCR) with fragment‐length analysis. Three primers are used in the PCR: two allele‐specific forward primers with a length‐difference and one reverse primer. The forward primers induce a length‐difference between the SNP‐variants, which can be assessed with standard fragment‐length analyses. We designed primers for 21 SNPs, and codominance was achieved for 76% of these SNPs. An inexpensive and flexible laser‐detection scoring protocol can be achieved with multiplex scoring and by incorporating the M13(‐21) genotyping method.  相似文献   

11.
To develop informative tools for the study of population affinities in African Americans, we sequenced the hypervariable segments I and II (HVS I and HVS II) of mitochondrial DNA (mtDNA) from 96 Sierra Leoneans; European Americans; rural, Gullah-speaking African Americans; urban African Americans living in Charleston, South Carolina; and Jamaicans. We identified single nucleotide polymorphisms (SNPs) exhibiting ethnic affinities, and developed restriction endonuclease tools to screen these SNPs. Here we show that three HVS restriction site polymorphisms (RSPs), EcoRV, FokI, and MfeI, exhibit appreciable differences in frequency (average delta = 0.4165) between putative African American parental populations (i.e., extant Africans living in Sierra Leone and European Americans). Estimates of European American mtDNA admixture, calculated from haplotypes composed of these three novel RSPs, show a cline of increasing admixture from Gullah-speaking African American (m = 0.0300) to urban Charleston African American (m = 0.0689) to West Coast African American (m = 0.1769) populations. This haplotype admixture in the Gullahs is the lowest recorded to date among African Americans, consistent with previous studies using autosomal markers. These RSPs may become valuable new tools in the study of ancestral affinities and admixture dynamics of African Americans.  相似文献   

12.
The differential relative contribution of males and females from Africa and Europe to individual African American genomes is relevant to mapping genes utilizing admixture analysis. The assessment of ancestral population contributions to the four types of genomic DNA (autosomes, X and Y chromosomes, and mitochondrial) with their differing modes of inheritance is most easily addressed in males. A thorough evaluation of 93 African American males for 2,018 autosomal single nucleotide polymorphic (SNP) markers, 121 X chromosome SNPs, 10 Y chromosome haplogroups specified by SNPs, and six haplogroup defining mtDNA SNPs is presented. A distinct lack of correlation observed between the X chromosome and the autosomal admixture fractions supports separate treatment of these chromosomes in admixture-based gene mapping applications. The European genetic contributions were highest (and African lowest) for the Y chromosome (28.46%), followed by the autosomes (19.99%), then the X chromosome (12.11%), and the mtDNA (8.51%). The relative order of admixture fractions in the genomic compartments validates previous studies that suggested sex-biased gene flow with elevated European male and African female contributions. There is a threefold higher European male contribution compared with European females (Y chromosome vs. mtDNA) to the genomes of African American individuals meaning that admixture-based gene discovery will have the most power for the autosomes and will be more limited for X chromosome analysis. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

13.
We have established the use of a primer extension/mass spectrometry method (the PinPoint assay) for high-throughput SNP genotyping of the human Y chromosome. 118 markers were used to define 116 haplogroups and typing was organised in a hierarchical fashion. Twenty multiplex PCR/primer extension reactions were set up and each sample could be assigned to a haplogroup with only two to five of these multiplex analyses. A single aliquot of one enzyme was found to be sufficient for both PCR and primer extension. We observed 100% accuracy in blind validation tests. The technique thus provides a reliable, cost-effective and automated method for Y genotyping, and the advantages of using a hierarchical strategy can be applied to any DNA segment lacking recombination.  相似文献   

14.
Multiplex Pyrosequencing   总被引:5,自引:2,他引:3       下载免费PDF全文
We describe here the development of a new and simple single-tube multiplex Pyrosequencing assay. Genomic DNA or cDNA was employed to PCR amplify region(s) using biotinylated and normal primer(s). Subsequent to capture of PCR products on streptavidin-coated beads, single-stranded DNA separation and hybridization of multiple sequencing primers, Pyrosequencing was performed. The obtained pyrogram resulted in a unique pattern in which the intensity of the signal determined the number of incorporated nucleotide(s). Here, we demonstrate the use of this multiplex Pyrosequencing for single nucleotide polymorphisms genotyping and microbial typing.  相似文献   

15.
Current methods for detection of mutations by polymerase chain reaction (PCR) and sequence analysis frequently are not able to detect heterozygous large deletions. We report the successful use of a novel approach to identify such deletions, based on detection of apparent homozygosity of contiguous single-nucleotide polymorphisms (SNPs). The sequence analysis of genomic DNA PCR products containing all coding exons and flanking introns identified only a single heterozygous mutation (IVS18+2t-->a) in a patient with classic infantile-onset autosomal recessive glycogen storage disease type II (GSDII). Apparent homozygosity for multiple contiguous SNPs detected by this sequencing suggested presence of a large deletion as the second mutation; primers flanking the region of homozygous SNPs permitted identification and characterization by PCR of a large genomic deletion (8.26 kb) extending from IVS7 to IVS15. The data clearly demonstrate the utility of SNPs as markers for large deletions in autosomal recessive diseases when only a single mutation is found, thus complementing currently standard DNA PCR sequence methods for identifying the molecular basis of disease.  相似文献   

16.
Millions of single nucleotide polymorphisms (SNPs) have been identified in recent years. This provides a great opportunity for large-scale association and population studies. However, many high-throughput SNP typing techniques require expensive and dedicated instruments, which render them out of reach for many laboratories. To meet the need of these laboratories, we here report a method that uses widely available DNA sequencer for SNP typing. This method uses a type II restriction enzyme to create extendable ends at target polymorphic sites and uses single-base extension (SBE) to discriminate alleles. In this design, a restriction site is engineered in one of the two polymerase chain reaction (PCR) primers so that the restriction endonuclease cuts immediately upstream of the targeted SNP site. The digestion of the PCR products generates a 5'-overhang structure at the targeted polymorphic site. This 5'-overhang structure then serves as a template for SBE reaction to generate allele-specific products using fluorescent dye-terminator nucleotides. Following the SBE, the allele-specific products with different sizes can be resolved by DNA sequencers. Through primer design, we can create a series of PCR products that vary in size and contain only one restriction enzyme recognition site. This allows us to load many PCR products in a single capillary/lane. This method, restriction-enzyme-mediated single-base extension, is demonstrated by typing multiple SNPs simultaneously for 44 DNA samples. By multiplexing PCR and pooling multiplexed reactions together, this method has the potential to score 50-100 SNPs/capillary/run if the sizes of PCR products are arranged at every 5-10 bases from 100 to 600 base range.  相似文献   

17.
High-throughput procedures are an important requirement for future large-scale genetic studies such as genotyping of single nucleotide polymorphisms (SNPs). Matrix-assisted laser desorption/ ionisation mass spectrometry (MALDI-MS) has revolutionised the analysis of biomolecules and, in particular, provides a very attractive solution for the rapid typing of DNA. The analysis of DNA by MALDI can be significantly facilitated by a procedure termed ‘charge-tagging’. We show here a novel approach for the generation of charge-tagged DNA using a photocleavable linker and its implementation in a molecular biological procedure for SNP genotyping consisting of PCR, primer extension, photocleavage and a chemical reaction prior to MALDI target preparation and analysis. The reaction sequence is amenable to liquid handling automation and requires no stringent purification procedures. We demonstrate this new method on SNPs in two genes involved in complex traits.  相似文献   

18.
Microsatellite-based parentage control in cattle   总被引:6,自引:0,他引:6  
As a new approach to parentage control we developed two multiplex coamplification polymerase chain reaction (PCR) systems containing a total of six different short tandem repeat (STR) loci; the microsatellite polymorphisms were visualized by automated fluorescence detection on the Applied Biosystems 373 DNA Sequencer with 672 Genescan Analysis software. Allele frequency data were determined from 238 animals. Thirty-five bovine parentage control cases not solvable by conventional blood typing could be solved.  相似文献   

19.
Liu H  Li S  Wang Z  Ji M  Nie L  He N 《Journal of biotechnology》2007,131(3):217-222
Single-nucleotide polymorphisms (SNPs) are one-base variations in DNA sequence that can often be helpful when trying to find genes responsible for inherited diseases. In this paper, a microarray-based method for typing single nucleotide polymorphisms (SNPs) using solid-phase polymerase chain reaction (PCR) on magnetic nanoparticles (MNPs) was developed. One primer with biotin-label was captured by streptavidin coated magnetic nanoparticles (SA-MNPs), and PCR products were directly amplified on the surface of SA-MNPs in a 96-well plate. The samples were interrogated by hybridization with a pair of dual-color probes to determine SNP, and then genotype of each sample can be simultaneously identified by scanning the microarray printed with the denatured fluorescent probes. The C677T polymorphisms of methylenetetrahydrofolate reductase (MTHFR) gene from 126 samples were interrogated using this method. The results showed that three different genotypes were discriminated by three fluorescence patterns on the microarray. Without any purification and reduction procedure, and all reactions can be performed in the same vessel, this approach will be a simple and labor-saving method for SNP genotyping and can be applicable towards the automation system to achieve high-throughput SNP detection.  相似文献   

20.
We have developed a self-reporting polymerase chain reaction (PCR) system for visual colorimetric gene detection and distinction of single nucleotide polymorphisms (SNPs). Amplification is performed using target-specific primers modified with a 5′-end tail that is complementary to a G-quadruplex deoxyribozyme-forming sequence. At end-point, G-quadruplexes are forced to fold from PCR-generated duplex DNA and then are used to colorimetrically report the successful occurrence of PCR by assaying their peroxidase activity using a chromogenic substrate. Furthermore, primer design considerations for the G-quadruplex-generating PCR system have allowed us to visually distinguish SNPs associated with Mycobacterium tuberculosis drug resistance alleles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号