首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different explants of Miscanthus x ogiformis Honda Giganteus were tested in order to develop an efficient tissue culture system. Shoot apices, leaf and root sections from in vitro-propagated plants, and leaf and immature inflorescence sections from 6-month-old greenhouse-grown plants were used. The explants were cultured on Murashige and Skoog medium supplemented with 4.5, 13.6, 22.6 or 31.7 M 2,4-dichlorophenoxyacetic acid. Three types of callus were formed but only one was embryogenic and regenerated plants. Callus induction and formation of embryogenic callus depended on the type and developmental stage of the explants. Shoot apices formed the highest percentage of embryogenic callus. There was a difference in the formation of embryogenic callus between leaf explants from in vitro-propagated shoots and greenhouse-grown plants. The best results were obtained from newly formed leaves of in vitro-propagated shoots and older leaves of greenhouse-grown plants. Immature inflorescences smaller than 2.5 cm produced a higher percentage of embryogenic callus than larger more mature inflorescences. Embryogenic callus derived from immature inflorescences had the highest regeneration capacity. Differences in 2,4-dichlorophenoxyacetic acid concentrations had no significant effect on callus induction, embryogenic callus formation and plant regeneration.Abbreviations MS Murashige & Skoog - 2,4-d 2,4-dichlorophenoxyacetic acid - BA benzyladenine - NAA 1-naphthaleneacetic acid - PPFD photosynthetic photon flux density  相似文献   

2.
The effects of proline additions to culture systems of Miscanthus x ogiformis Honda Giganteus' were investigated. Proline was added in concentrations of 0, 12.5, 25, 50, 100 or 300 mM to the callus induction and suspension culture media containing either Murashige and Skoog or N6 basal salts and 22.6 μM 2,4-dichlorophenoxyacetic acid. Shoot apices and leaves from in vitro-propagated shoots, and immature inflorescences from greenhouse-grown plants were used as explants for callus induction and formation. Suspension cultures initiated from embryogenic callus of immature inflorescences were used to test the effect of proline in suspension cultures. The proline additions affected the formation of embryogenic callus and the growth of suspension cultures. Improvements depended on the proline concentration and the basal salts of the medium. Addition of 12.5 to 50 mM proline to callus induction medium with Murashige and Skoog salts increased embryogenic callus formation on shoot apices and leaf explants while proline had no effect on embryogenic callus formation in medium with N6 salts. Increased growth with increasing proline concentration was obtained in suspension aggregates grown in medium with N6 salts, whereas proline only increased growth of suspension aggregates grown in medium with Murashige and Skoog salts at concentrations of 12.5 or 25 mM. A stimulating effect of proline on plant regeneration was observed in short-term cultures of callus as well as in long-term cultures of suspension aggregates. An optimum proline concentration for plant regeneration was found at 12.5 mM. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Three genotypes of Pearl millet were screened in vitro for induction of embryogenic callus, somatic embryogenesis and regeneration. Shoot apices excised from in vitro germinated seedlings or immature embryos isolated from green house established plants were used as primary explants. The frequency of embryogenic callus initiation was significantly higher in shoot apices in comparison with immature zygotic embryos. Moreover, differences between genotypes were minimal when using shoot apices. Friable embryogenic calli (type II) developed on the initial nodular calli after 1 to 3 months of culture. The frequency of type II callus is related to the composition of the maintenance medium and they were more often found in ageing cultures. The transfer of embryogenic calli onto auxin-free medium was sufficient for inducing somatic embryo development in short-term culture (3 months) while a progressive loss in regeneration potential was observed with increasing time of subcultures. Maturation of embryogenic calli on medium supplemented with activated charcoal, followed by germination of somatic embryos on medium supplemented with gibberellic acid, restored regeneration in long-term cultures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Somatic embryogenesis from pea embryos and shoot apices   总被引:3,自引:0,他引:3  
Conditions were defined for plant regeneration via somatic embryogenesis in pea, using explants from immature zygotic embryos or from shoot apices. For the induction of somatic embryos, an auxin (picloram or 2,4-dichlorophenoxyacetic acid) was required. Embryogenic callus originated from embryonic axis tissue of immature embryos and from the axillary-bud region and the plumula of shoot apices. A clear effect of embryo size on somatic embryogenesis was shown. There were differences in frequency of somatic embryogenesis among the five genotypes used in the study. Additions of BA to auxin-containing medium reduced embryo production. Histological examinations confirmed the embryogenic nature of the immature embryo cultures and revealed that somatic embryos originated from the meristematic areas near the callus surface.Abbreviations BA benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid  相似文献   

5.
Uniform leaf pieces of egg-plant, Solanum melongena L., were cultured in Murashige and Skoog's medium containing 2 mg l-1 kinetin and varying sugar levels. Glucose or fructose at 44 mM was optimal in inducing shoot regeneration compared to sucrose. Sucrose at 11 and 22 mM induced more shoot organogenesis than at lower or higher levels. An additional 22 mM mannitol with 22 mM sucrose enhanced shoot regeneration significantly more than 22 mM sucrose alone. The dual role of sugar as carbon and osmotic source in shoot regeneration from leaf explants of egg-plant is discussed.  相似文献   

6.
An efficient, highly reproducible system for plant regeneration via somatic embryogenesis was developed for Cenchrus ciliaris genotypes IG-3108 and IG-74. Explants such as seeds, shoot tip segments and immature inflorescences were cultured on Murashige and Skoog (MS) medium supplemented with 2.0–5.0 mg dm?3 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg dm?3 N6-benzyladenine (BA) for induction of callus. Callus could be successfully induced from all the three explants of both the genotypes. But the high frequency of embryogenic callus could be induced only from immature inflorescence explants. Somatic embryos were formed from nodular, hard and compact embryogenic calli when 2,4-D concentration was gradually reduced and BA concentration increased. Histological studies of somatic embryos indicated the presence of shoot apical meristem with leaf primordia. Ultrastructural details of globular and scutellar somatic embryos further validated successful induction and progression of somatic embryogenesis. Shoots were differentiated upon germination of somatic embryos on MS medium containing 2,4-D (0.25 mg dm?3) and BA or kinetin (1–5 mg dm?3). Roots were induced on ½ MS medium containing charcoal (0.8 %), and the regenerated plants transferred to pots and established in the soil showed normal growth and fertility.  相似文献   

7.
Somatic embryogenesis and plant regeneration of Canada wildrye (Elymus canadensis L.) from tissue culture was investigated by culturing immature embryos and inflorescences on MS medium containing 2 mg/l 2,4-D. The optimum size of explants for maximum embryogenic callus formation was 1.0 to 1.5 mm for embryos and 4 to 6 cm for inflorescences. Plant regeneration from the subcultured embryogenic callus was attempted monthly using hormone-free MS medium or MS medium with 0.5 mg/1 2,4-D and 0.3 mg/l GA3. Three hundred and fifty seven plantlets were regenerated from the callus cultures of both explant sources during a six month period. Ten chlorophyll deficient plants accounting for 2.8% of the total regenerants were observed. One plant with white striped leaves survived and was found to be an octoploid.Abbreviations GA3 gibberellic acid - MS Murashige and Skoog (1962) - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

8.
甘露糖对大麦品种不同外植体生长的影响   总被引:1,自引:0,他引:1  
以大麦栽培品种的茎尖、成熟胚为外植体,研究了不同甘露糖浓度对这些外植体愈伤组织诱导和生长的影响。结果表明:甘露糖浓度为20 g/L时,茎尖的叶片伸长和生根受到明显抑制;甘露糖浓度为10 g/L或15 g/L时,成熟胚的愈伤组织诱导率降低50%,甘露糖浓度为20 g/L或25 g/L时,成熟胚愈伤诱导和生长完全受到抑制,因此在以大麦茎尖和成熟胚为外植体的磷酸甘露糖异构酶(PM I)/甘露糖筛选中,可分别以20 g/L、25 g/L甘露糖作筛选压。另外,在培养早期阶段筛选比较适宜。  相似文献   

9.
Different explant materials were treated with antimitotic agents to induce chromosome doubling in several Miscanthus sinensis clones. In vitro propagated plants established in soil, in vitro shoots, embryogenic callus, shoot apices and leaf explants were treated with different concentrations of colchicine or oryzalin. No tetraploids were obtained after antimitotic treatment of plants established in soil. The percentage of chromosome doubled plants after antimitotic treatment of single in vitro shoots was genotype dependent. Rooted in vitro plantlets were not a suitable target for antimitotic treatment, due to a high frequency of ploidy chimeras. Many tetraploid plants were regenerated after antimitotic treatment at the callus and explant level, but the efficiency was genotype dependent, primarily due to differences in the ability to form regenerable callus and to regenerate plants from embryogenic callus. Treatment of shoot apices with colchicine was the most efficient and reproducible system in the four genotypes tested. It was possible to repeatedly use the same colchicine-containing medium without any reduction in the induction of regenerable callus or in the percentage of tetraploids, thereby minimising the handling of this very toxic compound.  相似文献   

10.
Summary Whole immature inflorescences at 4 different developmental stages (0.5, 1.0, 1.5, 2.0 cm in size) of different genotypes of Triticum aestivum and T. durum were cultured to see the morphogenetic responses on Murashige and Skoog's (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) (2.5 mg/l). Very young inflorescences 0.5 and 1.0cm long formed embryogenic callus from their entire surface while 1.5 and 2.0 cm long inflorescences formed embryogenic callus from the basal spikelets and rachis only. This embryogenic callus was maintained by regular subcultures on MS medium with 2,4-D (2.5 mg/l) for more than a year. Plantlets were regenerated by transferring the embryogenic callus on hormone-free MS medium. Inflorescences (0.5 and 1.0 cm long) responded best in forming callus as well as plantlets at a very high frequency. Variation in response was observed amongst the genotypes but the qualitative response of formation of embryogenic callus and later regeneration of plantlets was observed from all the genotypes. Immature young inflorescence explants could provide a suitable material for particle gun mediated genetic transformation in wheat.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - MS Murashige and Skoog (1962)  相似文献   

11.
Summary The ability of immature embryos, inflorescences and leaves of Secale vavilovii to form embryogenic callus was tested on Murashige and Skoog (1962) medium supplemented with different concentrations of 2,4-D. All cultured immature embryos formed calluses. The highest percentage of embryogenic callus production was from 1–2 mm embryos. Young leaves also formed calluses, mainly from the 10–15 mm basal segment, the percentages of embryogenic calluses being higher when cultures were maintained in darkness. Embryogenic calluses were obtained also from all the cultured immature inflorescences, in the three cases, rooted green plants were obtained and grown in soil. Comparison of the responses of the three explants used indicates that immature inflorescence is the most useful explant for obtaining regenerated plants in Secale vavilovii.  相似文献   

12.
A simple in vitro protocol has been developed for large scale multiplication of plants from various explants of Pimpinella anisum L., a medicinally important plant belonging to family Apiaceae. Browning of cultures was observed during the maintenance. Frequent subculture at an interval of about 15–17 days was essential for obtaining embryogenic callus cultures and preventing browning of cultures. High frequency of multiple shoot formation was achieved from callus cultures derived from shoot apices, root and stem explants, and also from seed-derived calli. Somatic embryogenesis was observed in callus cultures derived from seeds and shoot apices. Complete plants developed from these embryoids. Direct regeneration of plantlets from shoot apices was also observed. Roots formation occurred in all the cultures. The requirement for exogenous auxin and cytokinin for differentiation was found to be varying in different tissues.  相似文献   

13.
Two spring barley cultivars, Golden Promise and Galan, were screened for callus induction and shoot regeneration from cultured immature inflorescences. Genotype Galan have better regeneration capacity in in vitro conditions than Golden Promise.  相似文献   

14.
Effects of age and orientation of the explant on callus induction and de novo shoot regeneration from cotyledonary leaf segments of Jatropha curcas were studied. The callus induction and shoot regeneration capacity of cotyledonary leaf segments were found significantly related to the age of the explants and their orientation in culture medium. The youngest explant, derived from the cotyledonary leaf of germinated seed induced the highest regeneration response as compared to one- and two-week-old explants. A gradient response with age of the explant was observed in percentage of callus induction, shoot regeneration from callus and the number of shoots per regenerating callus. The explants cultured with their abaxial side in medium showed significantly higher regeneration response. The youngest explant was found to be most amenable to Agrobacterium-mediated transformation as compared to older explants. The fact that callus induced from the edges of the explant followed by de novo shoot induction, and strong transient gus expression observed in the edges of the explant are significant for routine Agrobacterium-mediated transformation and generation of stable transgenic plants in J. curcas.  相似文献   

15.

Sorghum bicolor is a recalcitrant species for tissue culture regeneration and genetic transformation. Browning of explants is one of the factors limiting organ and tissue cultures. To overcome this, callus tissue was initiated from the shoot tips of in vitro germinating seeds (S. bicolor cv. Róna 1), and then cultured on modified MS media (Murashige and Skoog in Physiol Plant 15:473–497, 1962). In the first experiment, we tested callus induction on several media supplemented with casein hydrolysate, polyvinylpyrrolidone, honey, and sucrose. The best callus induction was recorded for the medium with honey and sucrose (80.0%) and for control medium (79.8%). Shoot regeneration was tested on the MS medium with 6-benzylaminopurine (BAP) supplemented with honey and sucrose at a 1:1 ratio (by weight) or with sucrose only. The highest percentage of calluses regenerating shoots was noted for those induced on the medium with sucrose and honey—approx. four times higher when compared to the control. Rooted plantlets were acclimatized with a 92% survival rate. In the second experiment, we analyzed culture responses to various ways of honey application to the induction media: honey (autoclaved or filtered) in presence or absence of sucrose. Supplementation of the medium with fructose, glucose, and maltose at a proportion typical for honey was also investigated. The explant and callus survival rates were similar to those of the honey–sucrose combination in the first experiment. Only presence of both sucrose and honey in the induction medium improved the total regeneration rate to 37.9% over the control (18.8%). Sucrose and honey appear to act synergistically for shoot regeneration in callus cultures of sorghum.

  相似文献   

16.
Addition of the ethylene antagonist, silver nitrate (AgNO3), into callus induction medium significantly enhanced embryogenic callus production (both induction frequency and callus growth) of field-collected male immature inflorescence cultures of buffalograss NE84-45-3 and 'Texoka'. No stimulatory effect of AgNO3 was observed on embryogenic callus induction for female immature inflorescence culture of a female genotype `609' and `Texoka'. Calli initiated on AgNO3-containing media had more shoot-regenerating calli than those initiated on AgNO3-free media, when they were transferred to the regeneration media. Benzyladenine at 2.2 μM gave the best response for regeneration, regardless of the callus source. Although average number of shoots regenerated per callus was lower for calli initiated on AgNO3-containing media, total number of shoots regenerated was higher. The stimulatory effect, however, was environment and genotype dependent. While the addition of AgNO3 significantly stimulated embryogenic callus induction of NE84-45-3 immature inflorescences collected in Fall 1995 and May 1997, it only slightly increased the embryogenic callus induction frequencies in May 1996 when rainy conditions occurred. For male inflorescences of `Texoka' collected in early May, AgNO3 significantly enhanced embryogenic callus production consistently over the two-year period (1996, 1997). Published as Journal Series No. 1351, Agricultural Research Division, University of Nebraska. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
A procedure for inducing somatic embryos in shoot apex explants (2 mm) excised from shoot proliferation cultures established from adult oak trees (Quercus robur) was investigated. Embryogenesis was induced in shoot tip as well as leaf explants in three out of the five genotypes evaluated. Somatic embryos were formed by culture in induction medium supplemented with 21.48 μM naphthalene acetic acid and 2.22 μM benzyladenine for 8 weeks, and successive transfer of explants to expression media with a low concentration of growth regulators and without them. Both types of explants formed callus tissue from which somatic embryos developed, indicating indirect embryogenesis. Although the embryogenic frequencies were lower than 12%, it did not prevent the establishment of clonal embryogenic lines maintained by repetitive embryogenesis. Histological study confirmed an indirect somatic embryogenesis process from shoot tip explants, in which leaf primordia and the corresponding axial zones were involved in generating callus, whereas the apical meristem itself did not proliferate. The origin of embryogenic cells appeared to be associated with dedifferentiation of certain parenchymal cells in callus regions after transfer of explants to expression media without auxin. Division of embryogenic cells gave rise to proembryo aggregates of unicellular origin, although a multicellular origin from bulging embryogenic areas would also seem possible. Further development led to the formation of cotyledonary-stage somatic embryos and nodular embryogenic structures that may be considered as anomalous embryos with no clear bipolarity. Inducement of somatic embryos from explants isolated from shoot cultures ensures plant material all year round, thus providing a significant advantage over the use of leaf explants from field-grown trees.  相似文献   

18.
The effect of individual rye chromosomes on the induction of callus and the character of its regenerating capacity was studied with cultured immature embryos of wheat–rye (Triticum aestivum L. cv. Saratovskaya 29–Secale cereale L. cv. Onokhoiskaya) substitution lines. The genotypic diversity of the substitution lines proved to significantly affect variation of parameters characterizing the major types of callus cultures, that is, frequencies of embryogenic calli, which are capable of shoot regeneration, and of morphogenic calli, which produce root structures. Functioning in the genotypic background of common wheat cultivar Saratovskaya 29, chromosomes 2R and 3R of rye cultivar Onokhoiskaya stimulated significantly the induction of embryogenic callus highly capable of shoot regeneration. Rye chromosome 2R present in place of chromosome 2D in the common wheat genome suppressed the induction of callus producing root structures. Rye chromosomes 1R and 6R suppressed the induction of embryogenic callus capable of shoot regeneration.  相似文献   

19.
The induction of somatic embryogenesis from shoot apices and leaf explants of shoot cultures derived from 6- to 7-year-old white oak (Quercus alba L.) trees is reported in this study. Embryogenic response was obtained in two out of the three genotypes evaluated with embryo induction frequencies up to 50.7% for WOQ-1 and 3.4% for WOQ-5 genotypes. The embryogenic explants formed translucent nodular structures and cotyledonary-stage somatic embryos, which developed from callus tissue, indicating an indirect embryogenesis process. An efficient procedure was developed for WOQ-1 material on the basis of the most appropriate leaf developmental stage. Growing leaves excised from two nodes below the shoot apex showed the highest embryogenic induction index. These leaves contain cells in an undifferentiated state, as shown by the presence of precursor cells of stomata, absence of intercellular spaces and low starch content in the mesophyll cells. Nodular structures and/or somatic embryos began to arise 7–8 weeks after culture initiation, although most emerged after 9–12 weeks in culture. The sequence of application of media for somatic embryo induction was optimized with a two-step procedure consisting of culturing the explants in medium supplemented with 21.48 μM NAA and 2.22 μM BA for 8 weeks and transfer of explants into plant growth regulator-free medium for another 12 weeks. Clonal embryogenic lines were established and maintained by secondary embryogenesis. Embryo germination (30%) and plantlet conversion (16.6%) were achieved after cold storage for 2 months.  相似文献   

20.
Explants from immature inflorescences of four genotypes of Old World bluestem grasses, (Bothriochloa spp.), produced callus tissue on Linsmaier and Skoog (RM) and 1/2 Murashige and Skoog (1/2 MS) media containing high levels of growth regulators. Callus masses were composed of two distinct tissue types, one a compact, white, embryogenic portion (E calli), the other soft, translucent, gelatinous and nonembryogenic (NE calli). When transferred to medium with a reduced level of 2,4-D, and/or supplemented with zeatin, E callus underwent further organization culminating in shoot production. Light and scanning electron microscopy confirmed the embryogenic pathway of differentiation. Genotype significantly affected callus induction frequency and the number of plants regenerated. The RM medium induced more explants to initiate callus compared to the 1/2 MS medium. Age of the inflorescence explant, as indicated by size, was critical for callus induction. Inflorescences with racemes 8 mm in length were superior to older ones. Five-hundred-twenty-two plantlets were regenerated and grown to maturity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号