首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Yuan ZY  Li LH  Han XG  Chen SP  Wang ZW  Chen QS  Bai WM 《Oecologia》2006,148(4):564-572
The concept of nutrient use efficiency is central to understanding ecosystem functioning because it is the step in which plants can influence the return of nutrients to the soil pool and the quality of the litter. Theory suggests that nutrient efficiency increases unimodally with declining soil resources, but this has not been tested empirically for N and water in grassland ecosystems, where plant growth in these ecosystems is generally thought to be limited by soil N and moisture. In this paper, we tested the N uptake and the N use efficiency (NUE) of two Stipa species (S. grandis and S. krylovii) from 20 sites in the Inner Mongolia grassland by measuring the N content of net primary productivity (NPP). NUE is defined as the total net primary production per unit N absorbed. We further distinguished NUE from N response efficiency (NRE; production per unit N available). We found that NPP increased with soil N and water availability. Efficiency of whole-plant N use, uptake, and response increased monotonically with decreasing soil N and water, being higher on infertile (dry) habitats than on fertile (wet) habitats. We further considered NUE as the product of the N productivity (NP the rate of biomass increase per unit N in the plant) and the mean residence time (MRT; the ratio between the average N pool and the annual N uptake or loss). The NP and NUE of S. grandis growing usually in dry and N-poor habitats exceeded those of S. krylovii abundant in wet and N-rich habitats. NUE differed among sites, and was often affected by the evolutionary trade-off between NP and MRT, where plants and communities had adapted in a way to maximize either NP or MRT, but not both concurrently. Soil N availability and moisture influenced the community-level N uptake efficiency and ultimately the NRE, though the response to N was dependent on the plant community examined. These results show that soil N and water had exerted a great impact on the N efficiency in Stipa species. The intraspecific differences in N efficiency within both Stipa species along soil resource availability gradient may explain the differences in plant productivity on various soils, which will be conducive to our general understanding of the N cycling and vegetation dynamics in northern Chinese grasslands.  相似文献   

2.
We investigated how temperature and nutrient availability regulate fine-root productivity in nine tropical rainforest ecosystems on two altitudinal gradients with contrasting soil phosphorus (P) availabilities on Mount Kinabalu, Borneo. We measured the productivity and the nutrient contents of fine roots, and analyzed the relationships between fine-root parameters and environmental factors. The fine-root net primary productivity (NPP), total NPP, and ratio of fine-root NPP to total NPP differed greatly among the sites, ranging from 72 to 228 (g m?2 year?1), 281–2240 (g m?2 year?1), and 0.06–0.30, respectively. A multiple-regression analysis suggested a positive effect of P availability on total NPP, whereas fine-root NPP was positively correlated with mean annual temperature and with P and negatively correlated with N. The biomass and longevity of fine roots increased in response to the impoverishment of soil P. The carbon (C) to P ratio (C/P) of fine roots was significantly and positively correlated with the P-use efficiency of above-ground litter production, indicating that tropical rainforest trees dilute P in fine roots to maintain the C allocation ratio to these roots. We highlighted the mechanisms regulating the fine-root productivity of tropical rainforest ecosystems in relation to the magnitude of nutrient deficiency. The trees showed C-conservation mechanisms rather than C investment as responses to decreasing soil P availability, which demonstrates that the below-ground systems at these sites are strongly limited by P, similar to the above-ground systems.  相似文献   

3.
The nitrogen budget of a pine forest under free air CO2 enrichment   总被引:2,自引:0,他引:2  
Elevated concentrations of atmospheric CO2 increase plant biomass, net primary production (NPP) and plant demand for nitrogen (N). The demand for N set by rapid plant growth under elevated CO2 could be met by increasing soil N availability or by greater efficiency of N uptake. Alternatively, plants could increase their nitrogen-use efficiency (NUE), thereby maintaining high rates of growth and NPP in the face of nutrient limitation. We quantified dry matter and N budgets for a young pine forest exposed to 4 years of elevated CO2 using free-air CO2 enrichment technology. We addressed three questions: Does elevated CO2 increase forest NPP and the demand for N by vegetation? Is demand for N met by greater uptake from soils, a shift in the distribution of N between plants, microbes, and soils, or increases in NUE under elevated CO2? Will soil N availability constrain the NPP response of this forest as CO2 fumigation continues? A step-function increase in atmospheric CO2 significantly increased NPP during the first 4 years of this study. Significant increases in NUE under elevated CO2 modulated the average annual requirement for N by vegetation in the first and third growing seasons under elevated CO2; the average stimulation of NPP in these years was 21% whereas the average annual stimulation of the N requirement was only 6%. In the second and fourth growing seasons, increases in NPP increased the annual requirement for N by 27-33%. Increases in the annual requirement for N were largely met by increases in N uptake from soils. Retranslocation of nutrients prior to senescence played only a minor role in supplying the additional N required by trees growing under elevated CO2. NPP was highly correlated with between-plot variation in the annual rate of net N mineralization and CO2 treatment. This demonstrates that NPP is co-limited by C availability, as CO2 from the atmosphere, and N availability from soils. There is no evidence that soil N mineralization rates have increased under elevated CO2. The correlation between NPP and N mineralization rates and the increase in the annual requirement for N in certain years imply that soil N availability may control the long-term productivity response of this ecosystem to elevated CO2. Although we have no evidence suggesting that NPP is declining in response to >4 years of CO2 fumigation, if the annual requirement of N continues to be stimulated by elevated CO2, we predict that the productivity response of this forest ecosystem will decline over time.  相似文献   

4.
Minirhizotrons were used to observe fine root (Б mm) production, mortality, and longevity over 2 years in four sugar-maple-dominated northern hardwood forests located along a latitudinal temperature gradient. The sites also differed in N availability, allowing us to assess the relative influences of soil temperature and N availability in controlling fine root lifespans. Root production and mortality occurred throughout the year, with most production occurring in the early portion of the growing season (by mid-July). Mortality was distributed much more evenly throughout the year. For surface fine roots (0-10 cm deep), significant differences in root longevity existed among the sites, with median root lifespans for root cohorts produced in 1994 ranging from 405 to 540 days. Estimates of fine root turnover, based on the average of annual root production and mortality as a proportion of standing crop, ranged from 0.50 to 0.68 year-1 for roots in the upper 30 cm of soil. The patterns across sites in root longevity and turnover did not follow the north to south temperature gradient, but rather corresponded to site differences in N availability, with longer average root lifespans and lower root turnover occurring where N availability was greater. This suggests the possibility that roots are maintained as long as the benefit (nutrients) they provide outweighs the C cost of keeping them alive. Root N concentrations and respiration rates (at a given temperature) were also higher at sites where N availability was greater. It is proposed that greater metabolic activity for roots in nitrogen-rich zones leads to greater carbohydrate allocation to those roots, and that a reduction in root C sink strength when local nutrients are depleted provides a mechanism through which root lifespan is regulated in these forests.  相似文献   

5.
In arctic tundra soil, oxygen depletion associated with soil flooding may control plant growth either directly through anoxia or indirectly through effects on nutrient availability. This study was designed to evaluate whether plant growth and physiology of two arctic sedge species are more strongly controlled by the direct or indirect effects of decreased soil aeration. Eriophorum angustifolium and E. vaginatum, which originate from flooded and well-drained habitats, respectively, were grown in an in situ transplant garden at two levels of soil oxygen, nitrogen, and phosphorus availability over two growing seasons. In both species, N addition had a stronger effect on growth and biomass allocation than P addition or soil oxygen depletion. Net photosynthesis and carbohydrate concentrations were relatively insensitive to changes in these factors. Biomass reallocated from shoots to below-ground parts in response to limited N supply was equally divided between roots (nutrient acquisition) and perennating rhizomes (storage tissue formation) in E. angustifolium. E. Vaginatum only increased its allocation to rhizomes. In the flood-tolerant E. angustifolium, growth was improved by soil anoxia and biomass allocation among plant parts was not significantly affected. Contrary to our initial hypothesis, whole-plant growth in E. vaginatum improved in flooded soils; however, it only did so when N availability was high. Under low N availability growth in flooded soils was reduced by 20% compared to growth in the aerobic environment. Reduced biomass allocation to rhizomes and thus to storage potential under anaerobic conditions may reduce long-term survival of E. vaginatum in flooded habitats.  相似文献   

6.
Posada JM  Schuur EA 《Oecologia》2011,165(3):783-795
The effect of high precipitation regime in tropical forests is poorly known despite indications of its potentially negative effects on nutrient availability and carbon (C) cycling. Our goal was to determine if there was an effect of high rainfall on nitrogen (N) and phosphorous (P) availability and indexes of C cycling in lowland tropical rain forests exposed to a broad range of mean annual precipitation (MAP). We predicted that C turnover time would increase with MAP while the availability of N and P would decrease. We studied seven Neotropical lowland forests covering a MAP range between 2,700 and 9,500 mm. We used radiocarbon (?14C) from the atmosphere and respired from soil organic matter to estimate residence time of C in plants and soils. We also used C, N, and P concentrations and the stable isotope ratio of N (δ15N) in live and dead plant tissues and in soils as proxies for nutrient availability. Negative δ15N values indicated that the wettest forests had N cycles that did not exhibit isotope-fractionating losses and were potentially N-limited. Element ratios (N:P and C:P) in senescent leaves, litter, and live roots showed that P resorption increased considerably with MAP, which points towards increasing P-limitation under high MAP regimes. Soil C content increased with MAP but C turnover time only showed a weak relationship with MAP, probably due to variations in soil parent material and age along the MAP gradient. In contrast, comparing C turnover directly to nutrient availability showed strong relationships between C turnover time, N availability (δ15N), and P availability (N:P) in senescent leaves and litter. Thus, an effect of MAP on carbon cycling appeared to be indirectly mediated by nutrient availability. Our results suggest that soil nutrient availability plays a central role in the dynamic of C cycling in tropical rain forests.  相似文献   

7.
Water pulses and biogeochemical cycles in arid and semiarid ecosystems   总被引:45,自引:0,他引:45  
The episodic nature of water availability in arid and semiarid ecosystems has significant consequences on belowground carbon and nutrient cycling. Pulsed water events directly control belowground processes through soil wet-dry cycles. Rapid soil microbial response to incident moisture availability often results in almost instantaneous C and N mineralization, followed by shifts in C/N of microbially available substrate, and an offset in the balance between nutrient immobilization and mineralization. Nitrogen inputs from biological soil crusts are also highly sensitive to pulsed rain events, and nitrogen losses, particularly gaseous losses due to denitrification and nitrate leaching, are tightly linked to pulses of water availability. The magnitude of the effect of water pulses on carbon and nutrient pools, however, depends on the distribution of resource availability and soil organisms, both of which are strongly affected by the spatial and temporal heterogeneity of vegetation cover, topographic position and soil texture. The inverse texture hypothesis for net primary production in water-limited ecosystems suggests that coarse-textured soils have higher NPP than fine-textured soils in very arid zones due to reduced evaporative losses, while NPP is greater in fine-textured soils in higher rainfall ecosystems due to increased water-holding capacity. With respect to belowground processes, fine-textured soils tend to have higher water-holding capacity and labile C and N pools than coarse-textured soils, and often show a much greater flush of N mineralization. The result of the interaction of texture and pulsed rainfall events suggests a corollary hypothesis for nutrient turnover in arid and semiarid ecosystems with a linear increase of N mineralization in coarse-textured soils, but a saturating response for fine-textured soils due to the importance of soil C and N pools. Seasonal distribution of water pulses can lead to the accumulation of mineral N in the dry season, decoupling resource supply and microbial and plant demand, and resulting in increased losses via other pathways and reduction in overall soil nutrient pools. The asynchrony of resource availability, particularly nitrogen versus water due to pulsed water events, may be central to understanding the consequences for ecosystem nutrient retention and long-term effects on carbon and nutrient pools. Finally, global change effects due to changes in the nature and size of pulsed water events and increased asynchrony of water availability and growing season will likely have impacts on biogeochemical cycling in water-limited ecosystems.  相似文献   

8.

Background

Variation in microbial metabolism poses one of the greatest current uncertainties in models of global carbon cycling, and is particularly poorly understood in soils. Biological Stoichiometry theory describes biochemical mechanisms linking metabolic rates with variation in the elemental composition of cells and organisms, and has been widely observed in animals, plants, and plankton. However, this theory has not been widely tested in microbes, which are considered to have fixed ratios of major elements in soils.

Methodology/Principal Findings

To determine whether Biological Stoichiometry underlies patterns of soil microbial metabolism, we compiled published data on microbial biomass carbon (C), nitrogen (N), and phosphorus (P) pools in soils spanning the global range of climate, vegetation, and land use types. We compared element ratios in microbial biomass pools to the metabolic quotient qCO2 (respiration per unit biomass), where soil C mineralization was simultaneously measured in controlled incubations. Although microbial C, N, and P stoichiometry appeared to follow somewhat constrained allometric relationships at the global scale, we found significant variation in the C∶N∶P ratios of soil microbes across land use and habitat types, and size-dependent scaling of microbial C∶N and C∶P (but not N∶P) ratios. Microbial stoichiometry and metabolic quotients were also weakly correlated as suggested by Biological Stoichiometry theory. Importantly, we found that while soil microbial biomass appeared constrained by soil N availability, microbial metabolic rates (qCO2) were most strongly associated with inorganic P availability.

Conclusions/Significance

Our findings appear consistent with the model of cellular metabolism described by Biological Stoichiometry theory, where biomass is limited by N needed to build proteins, but rates of protein synthesis are limited by the high P demands of ribosomes. Incorporation of these physiological processes may improve models of carbon cycling and understanding of the effects of nutrient availability on soil C turnover across terrestrial and wetland habitats.  相似文献   

9.
Our knowledge of fundamental drivers of terrestrial net primary production (NPP) is crucial for improving the predictability of ecosystem stability under global climate change. However, the patterns and determinants of NPP are not fully understood, especially in the riparian zone ecosystem disturbed by periodic drought–rewetting (DRW) cycles. The environmental (flooding time, pH, moisture, and clay content) and nutritional properties (soil organic carbon, total nitrogen, total phosphorus, ammonium (NH4+‐N), nitrate (NO3‐N), and C:N:P stoichiometry) were investigated in the riparian zone of Pengxi River‐a typical tributary of Three Gorges Reservoir (TGR). Structure equation modeling was performed to evaluate the relative importance of environmental and nutritional properties on NPP of Cynodon dactylon (Linn.) Pers (C. dactylon)‐a dominating plant in the riparian zone of TGR. Our results indicated that NPP was much lower under much severe flooding stress. All of these variables could predict 46% of the NPP variance. Nutrient use efficiency (NUE) was one of the most critical predictor shaping the change of NPP. Specifically, flooding stress as a major driver had a direct positive effect on soil moisture and soil clay content. The soil clay content positively affects the soil C: N ratio, which further had an indirect negative impact on NPP by mediating NUE. Overall, our study provided a comprehensive analysis of the effects of the combined effect of environmental and nutrient factors on NPP and showed that continuous DRW cycles induced by hydrological regime stimulate the decrease of NPP of C. dactylon by changing NUE strategies. Further research is needed to explore the responses of NPP and NUE under different land use to DRW cycles and to investigate the DRW effects on the combined effect of environmental and nutrient factors by in situ experiments and long‐term studies.  相似文献   

10.
The capacity of Mediterranean species to adapt to variable nutrient supply levels in a global change context can be a key factor to predict their future capacity to compete and survive in this new scenario. We aimed to investigate the capacity of a typical Mediterranean tree species, Pinus halepensis, to respond to sudden changes in N and P supply in different environmental conditions. We conducted a fertilisation, irrigation and removal of competing vegetation experiment in a calcareous post-fire shrubland with an homogeneous young (5 years old) population of P. halepensis in order to investigate the retranslocation and nutrient status for the principal nutrients (N, P, Mg, K, S, Ca and Fe), and the nutrient use efficiency (NUE) of the most important nutrients linked to photosynthetic capacity (N, P, Mg and K). P fertilisation increased P concentration in needles, P, N, Mg and K retranslocations, and NUE calculated as biomass production per unit of nutrient lost in the litterfall. The P fertilisation was able to increase the aboveground biomasses and P concentration 3 years after P fertiliser application. Those responses to P fertilisation were enhanced by the removal of competing vegetation. The N needle and litterfall concentration decreased after P fertilisation and this effect was greater when the P fertilisation was accompanied by removal of competing vegetation. The increase of P availability decreased the P-NUE and increased the N-NUE when these variables were calculated as aboveground biomass production per unit of P present in the biomass. Both P-NUE and N-NUE increased when calculated as total aboveground production per unit of nutrient loss. The results show that it is necessary to calculate NUE on a different basis to have a wider understanding of nutrient use. The irrigation did not change the needle nutrient concentrations and the litterfall production, but it significantly changed the nutrient litterfall concentrations and total aboveground contents (especially P and K). These results show a high capacity of P. halepensis to quickly respond to a limiting nutrient such as P in the critical phases of post-fire regeneration. The increase in P availability had a positive effect on growth and P concentrations and contents in aboveground biomass, thus increasing the capacity of growth in future periods and avoiding immediate runoff losses and leachate. This capacity also strongly depends on neighbour competition.  相似文献   

11.
Waterlogging frequently reduces plant biomass allocation to roots. This response may result in a variety of alterations in mineral nutrition, which range from a proportional lowering of whole-plant nutrient concentration as a result of unchanged uptake per unit of root biomass, to a maintenance of nutrient concentration by means of an increase in uptake per unit of root biomass. The first objective of this paper was to test these two alternative hypothetical responses. In a pot experiment, we evaluated how plant P concentration of Paspalum dilatatum, (a waterlogging-tolerant grass from the Flooding Pampa, Argentina) was affected by waterlogging and P supply and how this related to changes in root-shoot ratio. Under both soil P levels waterlogging reduced root-shoot ratios, but did not reduce P concentration. Thus, uptake of P per unit of root biomass increased under waterlogging. Our second objective was to test three non-exclusive hypotheses about potential mechanisms for this increase in P uptake. We hypothesized that the greater P uptake per unit of root biomass was a consequence of: (1) an increase in soil P availability induced by waterlogging; (2) a change in root morphology, and/or (3) an increase in the intrinsic uptake capacity of each unit of root biomass. To test these hypotheses we evaluated (1) changes in P availability induced by waterlogging; (2) specific root length of waterlogged and control plants, and (3) P uptake kinetics in excised roots from waterlogged and control plants. The results supported the three hypotheses. Soil P avail-ability was higher during waterlogging periods, roots of waterlogged plants showed a morphology more favorable to nutrient uptake (finer roots) and these roots showed a higher physiological capacity to absorb P. The results suggest that both soil and plant mechanisms contributed to compensate, in terms of P nutrition, for the reduction in allocation to root growth. The rapid transformation of the P uptake system is likely an advantage for plants inhabiting frequently flooded environments with low P fertility, like the Flooding Pampa. This advantage would be one of the reasons for the increased relative abundance of P. dilatatum in the community after waterlogging periods. Received: 15 February 1997 / Accepted: 20 May 1997  相似文献   

12.

Aims

The objective of this study was to investigate how plants maintain productivity under a limited supply of water and N along the topographical soil water and N gradients in semi-arid forests.

Methods

We investigated forest structure and productivity, N cycling, and water and N use by plants at three different slope positions in a forested area near an arid boundary on a loess plateau in China.

Results

Net primary production (NPP) and aboveground N uptake decreased as soil water and/or N availability decreased on upper slopes; however, NPP and aboveground N uptake were only slightly lower than those of more humid forest ecosystems. Water use efficiency (WUE), N use efficiency (NUE), and fine root biomass increased as soil water and/or N supply decreased with altitude. High NUE was linked to higher N mean residence time, caused by higher N resorption efficiency rather than increasing N productivity.

Conclusions

Our results suggest that NPP and N uptake can be maintained by increasing WUE and NUE and increasing fine root biomass in water and N co-limited semi-arid forest ecosystems near arid boundaries. Such changes in resource use and acquisition strategy can affect production and N cycling via plant-soil feedback systems.
  相似文献   

13.
Question: How do increases in soil nutrient and water availability alter the nutrient fluxes through the resorption and litter decomposition pathways and how do they affect litter nutrient pools in a low‐productive alpine tundra ecosystem? Location: An alpine lichen‐rich tundra on Mt. Malaya Khati‐para in the NW Caucasus, Russia (43°27’ N, 41°42’ E; altitude 2800 m a.s.l.). Methods: We conducted a 4‐year fertilisation (N, P, N+P, lime) and irrigation experiment, and analysed the responses of nutrient resorption from senescing leaves, leaf litter quality and decomposability of six pre‐dominant vascular plant species, total plant community litter production and litter (nutrient) accumulation. Results: Vascular plant litter [N] and [P] increased 1.5 and 10 fold in response to N and P additions, due to increased concentrations of the nutrients in fresh leaves and unchanged or reduced resorption efficiency. Litter decomposability was not affected by nutrient amendments. Fertilisation enhanced litter production (180%; N+P treatment) and litter accumulation (80%; N+P), owing to tremendously increased production and low decomposability of graminoids. Together with increased litter [N] and [P] this led to great increases in total litter nutrient pools. Conclusions: Due to increased production of graminoids, nutrients added to the alpine tundra soil were mostly immobilised in recalcitrant, nutrient‐rich litter. This suggests that changing species composition in low productive ecosystems may act as an internal buffer mechanism, which under increased soil nutrient availability prevents the community from rapidly acquiring features typical of a high productive ecosystem such as high decomposability and high nutrient availability.  相似文献   

14.
在黄土丘陵沟壑区陕西省安塞县,于2007年生长季内,采用根钻法对刺槐(Robinia pseudoacacia)、侧柏(Platycladus orientalis)、油松(Pinus tabulaeformis)林地的细根和土壤水分进行了动态调查。结果表明:生长季内,刺槐、侧柏、油松林地0-200cm土层的土壤含水量变动较大,此土层是树木细根表面积的主要分布层,分别有82.4%(侧柏)、86.5%(刺槐)和87.5%(油松)的细根表面积分布。侧柏、刺槐、油松细根表面积垂直分布与剖面土壤水分间呈显著的正相关关系(p0.05)。模型S=AhB(C+Dh+Eh2+Fh3)可以较好地拟合不同树种细根表面积的垂直分布,拟合决定系数R2均在0.85以上。刺槐、侧柏、油松林地土壤含水量的动态变化均表现为10月4月6月8月。刺槐、油松细根表面积在6月出现1个高峰,侧柏在6月和10月各出现1个高峰。树木细根表面积动态与土壤含水量的季节动态不完全一致。侧柏、刺槐、油松生长所需的水分约87%来自降水的补给。但是,总体上侧柏、刺槐、油松细根表面积与林地土壤含水量的相关性不显著(p0.05)。全面了解树木细根季节动态的机理,还需对水分、温度、养分和树种本身遗传特性等影响因子进行综合研究。  相似文献   

15.

Background and aims

Soil microbial responses to global change can affect organic matter turnover and nutrient cycling thereby altering the overall ecosystem functioning. In a large-scale experiment, we investigated the impact of 5 years of climate change and elevated atmospheric CO2 on soil microorganisms and nutrient availability in a temperate heathland.

Methods

The future climate was simulated by increased soil temperature (+0.3 °C), extended pre-summer drought (excluding 5–8 % of the annual precipitation) and elevated CO2 (+130 ppm) in a factorial design. Soil organic matter and nutrient pools were analysed and linked to microbial measures by quantitative PCR of bacteria and fungi, chloroform fumigation extraction, and substrate-induced respiration to assess their impact of climate change on nutrient availability.

Results

Warming resulted in higher measures of fungi and bacteria, of microbial biomass and of microbial growth potential, however, this did not reduce the availability of nitrogen or phosphorus in the soil. Elevated CO2 did not directly affect the microbial measures or nutrient pools, whereas drought shifted the microbial community towards a higher fungal dominance.

Conclusions

Although we were not able to show strong interactive effects of the global change factors, warming and drought changed both nutrient availability and microbial community composition in the heathland soil, which could alter the ecosystem carbon and nutrient flow in the long-term.  相似文献   

16.
Above ground net primary production (NPP), nitrogen (N) allocation, and retranslocation from senescing leaves were measured in 7 sugar-maple dominated sites having annual net N mineralization rates ranging from 26 to 94 kg · ha–1 · yr–1. The following responses were observed: (1) Green sun leaves on richer sites had higher N mass per unit leaf area than sun leaves on poorer sites; (2) Total canopy N varied much less than annual net mineralization, ranging from 81 to 111 kg · ha–1; (3) This was due to the existence of a large and relatively constant pool of N which was retranslocated from senescing leaves for use the following year (54 to 80 kg · ha–1); (4) The percentage of canopy N retranslocated by sugar maple was also relatively constant, but was slightly higher on the richer sites. Percent N in leaf litter did not change across the gradient; (5) Above ground NPP increased linearly in relation to N allocated above ground. Therefore, N use efficiency, expressed as above ground NPP divided by N allocated above ground was constant; (6) N use efficiency expressed as (NPP above ground/total N availability) was a curvilinear function of N availability; and (7) This pattern reflected a decreasing apparent allocation of N below ground with decreasing N availability.  相似文献   

17.
藜个体在高密度种群中的氮素利用效率   总被引:4,自引:0,他引:4       下载免费PDF全文
 氮素利用效率(NUE)是植物养分策略研究中的一项重要内容。该文利用Berendse和Aerts提出的氮素利用效率概念和原理研究了高密度的藜(Chenopodium album)种群中不同植物个体在种内竞争条件下的氮素利用效率。结果表明,由于植株的氮素吸收速率与其个体大小成非线性关系,说明不同植株个体对氮素的竞争属于非对称竞争。个体较大的植株氮素输入较高,而个体较小的植株氮素输出较高,因而较大个体植株的氮素净增加也较高。植株的氮素损失随着个体大小的增加而增加,较大植株个体的氮素浓度随着生长而下降,而较小植株个体的氮素浓度随时间的变化不大,说明个体较小的植株的生长受光照的限制比受氮素的限制更大,而对较大的植株个体而言,它们的生长受氮素的限制更大。高密度藜种群中的不同植物个体具有不同的养分策略,氮素利用效率及其组成部分氮素生产力(NP)和氮素滞留时间(MRT)均不同。植株的NP和MRT与其个体大小正相关,较大的植物个体具有较高的NP和较长的MRT,因而氮素利用效率也高于个体较小的植株。在个体水平上,种内不同植株的NP与MRT不存在权衡关系(Trade-off)。因此,Berendse和Aerts提出的氮素利用效率概念不仅适用于研究种间的养分策略,对于研究种内不同植株的养分策略也同样适用。  相似文献   

18.
Chan  F.  Menge  B. A.  Nielsen  K.  & Lubchenco  J. 《Journal of phycology》2003,39(S1):8-9
Net primary production in marine ecosystems ultimately reflects the inputs of nutrients and the efficiency with which nutrients are acquired and used by phytoplankton in growth. In contrast to our understanding of the linkages between nutrient loading and production, the influence of nutrient use efficiency (NUE) on cross-system variations in coastal productivity remains unclear. Nutrient use efficiency at the ecosystem scale is the product of the per capita efficiency of nutrient use in phytoplankton growth and the efficiency with which phytoplankton communities are able to assimilate limiting nutrient(s). We measured the relative dominance of ecosystem N pools by phytoplankton biomass as an index of NUE across 56 inner-shelf sites. These sites were distributed across a strong geographic range of upwelling intensity and productivity along the coasts of Oregon, California and New Zealand. We also compiled an extensive dataset of published NUE values in coastal and oceanic sites in order to assess cross-system patterns and differences in NUE. Our results indicate that exceptional rates of productivity in inner-shelf upwelling systems arise as a consequence of near dominance of ecosystem N pools by phytoplankton biomass. Elevated rates of NUE nevertheless appear to be a transient phenomenon in marine systems. Cross-shelf transects across upwelling fronts off the Oregon coast reveal a temporal pattern of intense phytoplankton blooms and decline that reflects the eventual dominance of ecosystems N pools by detrital and dissolved organic N pools. Our findings suggest that NUE may play a central role in governing the productivity of marine ecosystems.  相似文献   

19.
Grassland management intensification can greatly influence nitrogen (N) dynamics between aboveground and belowground compartments mainly because of the large amount of available N forms, which are repeatedly added to soils. A better understanding of how chronic fertilisation might affect N use efficiency (NUE) in plants can contribute to reducing N losses from soils and improve the sustainability of managed grasslands. Here we address how NUE might be affected by (1) the addition of key nutrients (e.g. N, P, K, Mg) in different combinations, (2) grazing by rabbits, and (3) liming (i.e. CaCO3 applications) in a 22-year-old permanent grassland experiment established in Berkshire, UK, in 1991. We first calculate seven different NUE indexes, which are known to respond either to changes in soil N availability (i.e. endogenous N inputs from soil N mineralization processes) or to exogenous N inputs (i.e. synthetic N fertiliser). We found that plant NUE calculated as plant biomass produced per unit of N acquired significantly decreased under the chronic addition of multiple nutrients (NPKMg) and was even lower under N-only applications. Most NUE indexes significantly decreased under grazing but greatly increased under liming applications. We found evidence that NUE indexes, which accounted for endogenous N sources decreased at increased rates of soil N mineralization. Finally, we found no significant relationships between any of the NUE indexes and estimates of soil N losses (Mg N ha−1) or N retention in soils (i.e. units of soil N retained per unit of N added) calculated from changes in net soil N budget over 22 years. Our study carried out on relatively acidic sandy soils suggests how liming applications in combination with low levels of multi-nutrient additions (NPKMg) can significantly improve plant biomass production per unit of N added thus contributing to enhance the sustainability of managed grassland ecosystems.  相似文献   

20.
The question of how tropical trees cope with infertile soils has been challenging to address, in part, because fine root dynamics must be studied in situ. We used annual fertilization with nitrogen (N as urea, 12.5 g N m?2 year?1), phosphorus (P as superphosphate, 5 g P m?2 year?1) and potassium (K as KCl, 5 g K m?2 year?1) within 38 ha of old‐growth lowland tropical moist forest in Panama and examined fine root dynamics with minirhizotron images. We expected that added P, above all, would (i) decrease fine root biomass but, (ii) have no impact on fine root turnover. Soil in the study area was moderately acidic (pH = 5.28), had moderate concentrations of exchangeable base cations (13.4 cmol kg?1), low concentrations of Bray‐extractable phosphate (PO4 = 2.2 mg kg?1), and modest concentrations of KCl‐extractable nitrate (NO3 = 5.0 mg kg?1) and KCl‐extractable ammonium (NH4 = 15.5 mg kg?1). Added N increased concentrations of KCl‐extractable NO3 and acidified the soil by one pH unit. Added P increased concentrations of Bray‐extractable PO4 and P in the labile fraction. Concentrations of exchangeable K were elevated in K addition plots but reduced by N additions. Fine root dynamics responded to added K rather than added P. After 2 years, added K decreased fine root biomass from 330 to 275 g m?2. The turnover coefficient of fine roots <1 mm diameter ranged from 2.6 to 4.4 per year, and the largest values occurred in plots with added K. This study supported the view that biomass and dynamics of fine roots respond to soil nutrient availability in species‐rich, lowland tropical moist forest. However, K rather than P elicited root responses. Fine roots smaller than 1 mm have a short lifetime (<140 days), and control of fine root production by nutrient availability in tropical forests deserves more study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号