首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
核内再复制是指细胞没有经历有丝分裂而形成特殊的多倍体核的现象。这是由于细胞周期没有进入M期并多次重复进入S期所致,其主要特征是MPF失活及S期CDKs激酶活性呈周期性振荡。核内再复制现象普遍存在于动物和植物中,在高代谢活性组织的细胞及最终进行高度分化的细胞中最常见。对细胞迅速生长和增殖有着重要的意义。如何阻止细胞有丝分裂的进行,进而引发核内再复制的机制仍在研究中。本文对植物及哺乳动物细胞中核内再复制的产生、调控机制及体外诱导方式等进行了综合评述。  相似文献   

2.
DNA复制压力(replication stress,RS)是一个广泛定义DNA复制障碍的术语,通常是指那些能够扰乱复制进程,造成复制叉减慢或停滞的情况。复制压力的过度累积是肿瘤发生和基因组不稳定的主要驱动因素。细胞染色体在复制过程中会不断地遭受来自外源性或内源性复制压力,而端粒及常见脆性位点(common fragile sites,CFSs)是一类对复制压力高度敏感的区域,在复制压力较高的情况下,这些区域往往难以被完全复制。近年的研究发现,有丝分裂期DNA合成(mitotic DNA repair synthesis,MiDAS)区别于S期的复制,可以帮助难以复制的区域在进入有丝分裂期后仍然能够保证复制的进行,因此,MiDAS也被称为“复制的挽救机制”。由于端粒的维持依赖于端粒酶活性及端粒替代性延长机制(alternative lengthening of telomeres,ALT),而具有更多端粒脆性的ALT细胞中端粒-MiDAS表现出高度的活性,因此本文就MiDAS的发生机制及在不同端粒维持机制下难以复制的端粒如何应对复制压力在有丝分裂期完成DNA的合成进行综述。  相似文献   

3.
刘阳  孙静亚  孔道春 《生命科学》2014,(11):1108-1119
DNA复制是细胞最基本的生命活动之一,是生物体生存和繁殖的基础。从原核生物到真核生物,DNA复制过程基本保守,分为复制起始和延伸两个阶段。复制叉是DNA复制的基本结构,它容易遭受多种内源或外源的DNA复制压力影响而停顿,导致基因组不稳定,引起细胞凋亡、癌变或细胞死亡等严重后果。为了维持复制叉的稳定,细胞进化出了一系列机制,其中最重要机制之一便是S期细胞周期检验点。就影响DNA复制叉稳定的内外因素、S期细胞周期检验点与复制叉稳定性的关系以及复制叉稳定性与相关疾病的发生、治疗等问题进行简要综述。  相似文献   

4.
采用荧光原位杂交技术,对分属5个科的10种植物的分生细胞的18S-25S rRNA基因(45S rDNA)的组织模式进行了比较分析.45S rDNA探针在所有供试植物的间期核都产生了两种杂交信号:荧光强、位于核仁周边的纽和荧光较弱分布于核仁内的点,表明不同植物间期核的rDNA染色质的组织模式相似.在每种植物的部分间期细胞都观察到点与纽相连或从纽发出的情况,而且点的数目越多纽就变得越小,点的有无和数目的多少与细胞的活性呈正相关.这些事实表明,纽代表了处于凝缩状态的非活性的rDNA染色质,点是由纽解凝缩而来,rDNA异染色质解凝缩形成点是植物rRNA基因活跃转录的细胞学表现,在同一物种中点的多少代表了间期核rDNA转录活性的强弱.我们的结果支持点是核仁内活性rRNA基因组织的结构单位及rRNA合成发生地点的推论.我们的结果还显示,不同植物间期核的rDNA染色质的组织也存在一些差异,其中核仁内点的最大数目有较大的不同.在所有供试植物的有丝分裂前中期细胞,45S rDNA探针在rDNA位点都产生了松散的信号块和许多点,表明植物的rDNA位点在有丝分裂前中期还有较活跃的转录.  相似文献   

5.
免疫荧光染色结果说明植物细胞核内含有与抗动物NuMA多抗呈阳性交叉反应的多肽。选择性抽提并结合免疫荧光染色结果说明这种多肽位于核基质纤维蛋白网络上。免疫印迹反应显示胡萝卜(DaucuscarotaL.)悬浮培养细胞核基质蛋白与抗动物NuMA蛋白多抗的阳性反应条带为74kD和76kD。有丝分裂各期免疫荧光染色的结果表明植物细胞中的NuMA类似蛋白在有丝分裂过程中呈现有规律的变化。结合选择性抽提的有丝分裂各期的免疫荧光染色的结果表明核基质在此过程中也发生明显变化。应用选择性抽提并结合DGD包埋去包埋电镜技术对植物细胞间期及有丝分裂期核基质的形态结构进行了观察。结果显示胡萝卜悬浮培养细胞间期核内存在一个非染色质性的纤维蛋白网络体系,而在正处于分裂的细胞中则未观察到。以上结果说明NuMA类似蛋白是核基质的组分之一并与有丝分裂密切相关。  相似文献   

6.
增殖细胞核抗原(PCNA)是DNA聚合酶δ的辅助蛋白,它是细胞染色体DNA复制所必需的。人工设计的ribozyme具有可特异地切割PCNA mRNA的性质,将此ribozyme的自修剪体内表达质粒导入HeLa细胞,从细胞总RNA中分离相应部分能在体外切割靶RNA片段,证明此表达质粒在细胞内能表达出有活性的ribozyme分子。与对照相比,导入ribo-zyme表达质粒的HeLa细胞进入S期的时间从12 h推迟到20 h,而突变ribozyme的对照表明反义抑制对细胞进入S期的影响较小(推迟到15 h)。证明该ribozyme能有效抑制He-La细胞DNA复制,同时亦证明PCNA对于细胞DNA复制及细胞周期进程的重要性。  相似文献   

7.
细胞周期内发生的事件是细胞正常繁殖所必需的。对于所有的细胞周期来说,有两个事件是主要的:S期和M期。前者是染色体复制时期,后者是复制了的染色体分离并进入两个子细胞的时期。本文讨论细胞周期中M期启动的调控。据现在所知,所有的真核细胞存在一个共同的调控机制,其中心是蛋白激酶P34~(cdc2),它在有丝分裂及减数分裂的M期都被活化。在活化时,该激酶的磷酸化状态需要发生改变,并要和周期素(cyclin)相互作用。周期素是一类在细胞周期过程中水平发生变化的蛋白质。P34~(cdc2)被认为可以  相似文献   

8.
细胞周期检查点在细胞遭遇DNA损伤因子的攻击或遇到营养缺乏等不利因素作用时,能够暂时阻止或减慢细胞周期的进程,是细胞在长期进化中发展起来的抵御DNA损伤的重要机制.不仅如此,最近的研究表明,在正常生理条件下,存在一种S期检查点,对DNA复制的速度进行调控.从分子水平而言,这种调控作用可能是通过一系列细胞周期调控蛋白如ATR、9-1-1复合体、Chk1、Cdc25A和CDK2等的作用来实现的.这种调节作用对细胞至关重要,它使DNA复制速度不致于过快,从而减少复制过程中发生错误的几率,维护基因组的稳定性.  相似文献   

9.
流感病毒复制涉及一系列复杂的核几,外生物大分子转运过程。感染早期,进入胞质的VRNP转运到核内;晚期,病毒转录本向核外运输,新合成的结构蛋土随之运往核内,在核中完成vRNP装配,核中装配的子代vRNP又运往胞质。  相似文献   

10.
本文采用作者首创的双周期BrdU二次标记法研究了蚕豆根尖细胞染色体的复制带,得到了分布在整条染色体上的清晰稳定的多条带纹.这是复制带首次在植物染色体上取得的具有实用意义的带型.为进一步制定植物染色体的标准带型和研究植物染色体的复制方式提供了一条途径.  相似文献   

11.
Investigating the hows and whys of DNA endoreduplication   总被引:24,自引:5,他引:19  
Endoreduplication is a form of nuclear polyploidization thatresults in multiple, uniform copies of chromosomes. This processis common in plants and animals, especially in tissues withhigh metabolic activity, and it generally occurs in cells thatare terminally differentiated. In plants, endoreduplicationis well documented in the endosperm and cotyledons of developingseeds, but it also occurs in many tissues throughout the plant.It is thought that endoreduplication provides a mechanism toincrease the level of gene expression, but the function of thisprocess has not been thoroughly investigated. Numerous observationshave been made of endoreduplication, or at least extra cyclesof S-phase, as a consequence of mutations in genes controllingseveral aspects of cell cycle regulation. However, until recentlythere were few studies directed at the molecular mechanismsresponsible for this specialized cell cycle. It is suggestedthat endoreduplication requires nothing more elaborate thana loss of M-phase cyclin-dependent kinase activity and oscillationsin the activity of S-phase cyclin-dependent kinase. Key words: Endoreduplication, gene expression, cell cycle regulation, cyclin-dependent kinase.  相似文献   

12.
Endoreduplication is the process by which the nuclear genome is repeatedly replicated without mitotic cell division, resulting in nuclei that contain numerous additional genome copies. Endoreduplication occurs widely throughout Eucarya and is particularly common in angiosperms and insects. Although endoreduplication is an important process in the terminal differentiation of some specialized cell types, and often increases cell size and metabolism, the direct effects of increasing nuclear ploidy on cell function are not well resolved. Here, we examine if endoreduplication may play a role in body size and/or caste differentiation in ants. Nuclear ploidy was measured by flow cytometry of whole individuals (providing the basis for overall body size patterns) and individual body segments for multiple polymorphic ant species. We used cell cycle values, interpreted as the mean number of endocycles performed by each cell in the sample, as our measure of overall endoreduplication. Among females of four polymorphic ant species, endoreduplication was positively related with size within the worker caste, but was not related to caste generally in two species where we also examined queens. Additionally, abdomens had the greatest endoreduplication of all body parts regardless of caste or size. We also found that males, having derived from haploid unfertilized eggs, had the highest rates of endoreduplication and may compensate for their haploid origin by performing an additional endocycle relative to females. These results suggest that endoreduplication may play a role in body size variation in eusocial insects and the development of some segment‐specific tissues.  相似文献   

13.
Potential role of the rice OsCCS52A gene in endoreduplication   总被引:2,自引:0,他引:2  
Su'udi M  Cha JY  Jung MH  Ermawati N  Han CD  Kim MG  Woo YM  Son D 《Planta》2012,235(2):387-397
In eukaryotes, the cell cycle consists of four distinct phases: G1, S, G2 and M. In certain condition, the cells skip M-phase and undergo endoreduplication. Endoreduplication, occurring during a modified cell cycle, duplicates the entire genome without being followed by M-phase. A cycle of endoreduplication is common in most of the differentiated cells of plant vegetative tissues and it occurs extensively in cereal endosperm cells. Endoreduplication occurs when CDK/Cyclin complex low or inactive caused by ubiquitin-mediated degradation by APC and their activators. In this study, rice cell cycle switch 52 A (OsCCS52A), an APC activator, is functionally characterized using the reverse genetic approach. In rice, OsCCS52A is highly expressed in seedlings, flowers, immature panicles and 15 DAP kernels. Localization studies revealed that OsCCS52A is a nuclear protein. OsCCS52A interacts with OsCdc16 in yeast. In addition, overexpression of OsCCS52A inhibits mitotic cell division and induces endoreduplication and cell elongation in fission yeast. The homozygous mutant exhibits dwarfism and smaller seeds. Further analysis demonstrated that endoreduplication cycles in the endosperm of mutant seeds were disturbed, evidenced by reduced nuclear and cell sizes. Taken together, these results suggest that OsCCS52A is involved in maintaining normal seed size formation by mediating the exit from mitotic cell division to enter the endoreduplication cycles in rice endosperm.  相似文献   

14.
Endoreduplication is a cell cycle variant in which multiple rounds of DNA replication occur without subsequent mitosis, resulting in polyploid cells. Although cells with endoreduplicated nuclei were ubiquitously distributed throughout the abscission zone (AZ) of tomato leaf before abscission induction by ethylene, endoreduplication was detected mostly on the proximal side of the AZ after induction. The possible association between endoreduplication and intensive membrane trafficking in cells at the proximal side of the AZ is discussed.  相似文献   

15.
16.
17.
Endoreduplication in higher plants   总被引:27,自引:0,他引:27  
Cell polyploidisation can be achieved by endoreduplication, which consists of one or several rounds of DNA synthesis in the absence of mitosis. As a consequence, chromosomes with 2n chromatids are produced without change in the chromosome number. Endoreduplication is the most common mode of polyploidisation in plants and can be found in many cell types, especially in those undergoing differentiation and expansion. Although accumulating data reveal that this process is developmentally regulated, it is still poorly understood in plants. At the molecular level, the increasing knowledge on plant cell cycle regulators allows the acquisition of new tools and clues to understand the basis of endoreduplication control and, in particular, the switch between cell proliferation and cell differentiation.  相似文献   

18.
Endoreduplication was induced in V 79 cells using Colcemid. The concentration of Colcemid necessary to induce endoreduplication is about 1000 times higher than that needed to arrest mitoses or to induce ordinary tetraploid cells. Diplochromosomes with sister chromatid differentiation were obtained by adding BrdU for the duration of one cell cycle prior to the induction of endoreduplication. The induction of endoreduplication with Colcemid had no influence on the frequency of sister chromatid exchanges (SCEs). Treating the cultures with mitomycin C (MMC) before adding BrdU increased the percentage of endoreduplieated mitoses and also led to marked SCE induction. In the diplochromosomes, the frequencies of both twin SCEs (first cycle) as well as single SCEs (second cycle) were increased. It was also found that the SCE frequencies in mitoses after endoreduplication were lower than the values found in diploid and ordinary tetraploid metaphases of the same preparation. The possible conclusions concerning the lifetime of SCE-inducing lesions and the influence of repair processes are discussed.  相似文献   

19.
Endoreduplication is a common process in plants that allows cells to increase their DNA content. In the tobacco cell cultures studied in this work it can be induced by simple hormone deprivation. Mesophyll protoplast-derived cells cultured in the presence of NAA (auxin) and BAP (cytokinin) keep on dividing, while elongation and concomitant DNA endoreduplication are induced and maintained in a medium containing only NAA. If aphidicolin is given to the two types of culture, no effect is observed on elongating, endoreduplicating cells. However, the cells programmed for division switch to elongation and DNA endoreduplication. Thus aphidicolin, an inhibitor of the replicative DNA polymerases, alpha and delta, does not inhibit endoreduplication, and furthermore actually induces it when the mitotic cell cycle is blocked. DNA duplication and cell growth can only be completely blocked if ddTTP, an inhibitor of DNA polymerase-beta, is given together with aphidicolin. This result implies that an aphidicolin-resistant DNA polymerase, such as the repair-associated DNA polymerase-beta, can mediate DNA synthesis during endoreduplication and can substitute for polymerases-alpha and -delta when the latter are inhibited. Similar results are obtained in cultures of the BY-2 cell line by withdrawing auxins from the culture medium. In this cell line endoreduplication is induced only in a small proportion of the cells. A greater proportion of the cells are blocked in the G(2) phase of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号