首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   7篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   7篇
  2014年   6篇
  2013年   8篇
  2012年   11篇
  2011年   11篇
  2010年   12篇
  2009年   7篇
  2008年   7篇
  2007年   11篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1997年   6篇
  1996年   2篇
  1994年   5篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有159条查询结果,搜索用时 16 毫秒
1.
1. The zinc and copper concentration of plasma was determined in rainbow trout, lake trout, walleye and whitefish. 2. These fish had mean plasma zinc concentrations ranging from 9.3 to 15.1 ppm and copper concentrations from 0.6 to 1.3 ppm. 3. In rainbow trout, the concentration of zinc and copper is greater in the erythrocyte membrane than in the total erythrocyte. 4. Ultrafilterable plasma zinc and copper concentration in rainbow trout was determined to be 0.03 and 0.019 ppm, respectively. 5. Dialysis of rainbow trout plasma against 20 mM EDTA results in removal of 99% of the zinc and 88% of the copper from plasma proteins.  相似文献   
2.
The yeast protein encoded by PUB1 binds T-rich single stranded DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have characterized binding activities in yeast which recognise the T-rich strand of the yeast ARS consensus element and have purified two of these to homogeneity. One (ACBP-60) is detectable in both nuclear and whole cell extracts, while the other (ACBP-67) is apparent only after fractionation of extracts by heparin-sepharose chromatography. The major binding activity detected in nuclear extracts was purified on a sequence-specific DNA affinity column as a single polypeptide with apparent mobility of 60kDa (ACBP-60). This protein co-fractionates with nuclei, is present at several thousand copies per cell and has a Kd for the T-rich single strand of the ARS consensus between 10(-9) and 10(-10) M. Competition studies with simple nucleic acid polymers show that ACBP-60 has marginally higher affinity for poly dT30 than for a 30 nt oligomer containing the T-rich strand of ARS 307, and approximately 10 fold higher affinity for poly rU. Internal sequence information of purified p60 reveals identity with the open reading frames of genes PUB1 and RNP1 which encode polyuridylate binding protein(s). The second binding activity, ACBP-67, also binds specifically to the T-rich single strand of the ARS consensus, but with considerably lower affinity than ACBP-60. Peptide sequence reveals that the 67kDa protein is identical to the major polyA binding protein in yeast, PAB1.  相似文献   
3.
Hormonal imprinting takes place at the first encounter of the hormone and receptor, and results in a changed binding capacity and reaction of the cell and its progeny generations. The imprinting effect of three amino acids and their oligopeptides is studied using fluorescent-labelled peptides. Glycine and lysine could provoke positive imprinting (increased binding in the progeny generations) for their own peptides, but alanine could not. Mostly positive imprinting was provoked by glycine and lysine peptides for their own peptides of different chain length. The optimal chain length provoking self-imprinting was four for glycine, two for lysine and three for alanine. Except in this case, alanine was neutral or provoked mostly negative imprinting. After reaching the optimal chain length, there is a decline in binding. Evolutionary conclusions are discussed.  相似文献   
4.
When an γ‐irradiated Dy‐, Tm‐, Sm‐ or Mn‐doped CaSO4 crystal is impulsively deformed, two peaks appear in the ML intensity versus time curve, whereby the first ML peak is found in the deformation region and the second in the post‐deformation region of the crystals. In this study, intensities Im1 and Im2 corresponding to first and second ML peaks, respectively, increased linearly with an impact velocity v0 of the piston used to deform the crystals, and times tm1 and tm2 corresponding to the first and second ML peaks, respectively, decreased with impact velocity. Total ML intensity initially increased with impact velocity and then reached a saturation value for higher values of impact velocity. ML intensity increased with increasing γ‐doses and size of crystals. Results showed that the electric field produced as a result of charging of newly‐created surfaces caused tunneling of electrons to the valence band of the hole‐trapping centres. The free holes generated moved in the valence band and their subsequent recombination with electron trapping centres released energy, thereby resulting in excitation of luminescent centres. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
5.
Background: Colorectal carcinogenesis is believed to be a multi-stage process that originates with a localized adenoma, which linearly progresses to an intra-mucosal carcinoma, to an invasive lesion, and finally to metastatic cancer. This progression model is supported by tissue culture and animal model studies, but it is difficult to reconcile with several well-established observations, principally among these are that up to 25% of early stage (Stage I/II), node-negative colorectal cancer (CRC) develop distant metastasis, and that circulating CRC cells are undetectable in peripheral blood samples of up to 50% of patients with confirmed metastasis, but more than 30% of patients with no detectable metastasis exhibit such cells. The mechanism responsible for this diverse behavior is unknown, and there are no effective means to identify patients with pending, or who are at high risk for, developing metastatic CRC.Novel findings: Our previous studies of human breast and prostate cancer have shown that cancer invasion arises from the convergence of a tissue injury, the innate immune response to that injury, and the presence of tumor stem cells within tumor capsules at the site of the injury. Focal degeneration of a capsule due to age or disease attracts lymphocyte infiltration that degrades the degenerating capsules resulting in the formation of a focal disruption in the capsule, which selectively favors proliferating or “budding” of the underlying tumor stem cells. Our recent studies suggest that lymphocyte infiltration also triggers metastasis by disrupting the intercellular junctions and surface adhesion molecules within the proliferating cell buds causing their dissociation. Then, lymphocytes and tumor cells are conjoined through membrane fusion to form tumor-lymphocyte chimeras (TLCs) that allows the tumor stem cell to avail itself of the lymphocyte''s natural ability to migrate and breach cell barriers in order to intravasate and to travel to distant organs. Our most recent studies of human CRC have detected nearly identical focal capsule disruptions, lymphocyte infiltration, budding cells, and the formation of TLCs. Our studies have further shown that age- and type-matched node-positive and -negative CRC have a significantly different morphological and immunohistochemical profile and that the majority of lymphatic ducts with disseminated cells are located within the mucosa adjacent to morphologically normal appearing epithelial structures that express a stem cell-related marker.New hypothesis: Based on these findings and the growth patterns of budding cells revealed by double immunohistochemistry, we further hypothesize that metastatic spread is an early event of carcinogenesis and that budding cells overlying focal capsule disruptions represent invasion- and metastasis-initiating cells that follow one of four pathways to progress: (1) to undergo extensive in situ proliferation leading to the formation of tumor nests that subsequently invade the submucosa, (2) to migrate with associated lymphocytes functioning as “seeds” to grow in new sites, (3) to migrate and intravasate into pre-existing vascular structures by forming TLCs, or (4) to intravasate into vascular structures that are generated by the budding cells themselves. We also propose that only node-positive cases harbor stem cells with the potential for multi-lineage differentiation and unique surface markers that permit intravasation.  相似文献   
6.
7.
The weathering of silicate in the world's critical-zone (rock-soil interface) is a natural mechanism providing a feedback on atmospheric CO2 concentrations through the carbonate-silicate cycle. We examined culturable bacterial communities from a critical-zone in western Iceland to determine the optimum growth temperature and their ability to solubilize phosphate-containing minerals, which are abundant within the critical-zone area examined here. The majority of isolated bacteria were able to solubilize mineral-state phosphate. Almost all bacterial isolates were mesophilic (growth optima of 20–45°C), despite critical-zone temperatures that were continuously below 15°C, although all isolates could grow at temperatures associated with the critical-zone (?2.8–13.1°C). Only three isolates were shown to have thermal optima for growth that were within temperatures experienced at the critical-zone. These findings show that the bacteria that inhabit the western Icelandic critical-zone have temperature growth optima suboptimally adapted to their environment, implying that other adaptations may be more important for their long-term persistance in this environment. Moreover, our study showed that the cold basaltic critical-zone is a region of active phosphate mineral-weathering.  相似文献   
8.
Interactions between microorganisms and rocks play an important role in Earth system processes. However, little is known about the molecular capabilities microorganisms require to live in rocky environments. Using a quantitative label‐free proteomics approach, we show that a model bacterium (Cupriavidus metallidurans CH34) can use volcanic rock to satisfy some elemental requirements, resulting in increased rates of cell division in both magnesium‐ and iron‐limited media. However, the rocks also introduced multiple new stresses via chemical changes associated with pH, elemental leaching and surface adsorption of nutrients that were reflected in the proteome. For example, the loss of bioavailable phosphorus was observed and resulted in the upregulation of diverse phosphate limitation proteins, which facilitate increase phosphate uptake and scavenging within the cell. Our results revealed that despite the provision of essential elements, rock chemistry drives complex metabolic reorganization within rock‐dwelling organisms, requiring tight regulation of cellular processes at the protein level. This study advances our ability to identify key microbial responses that enable life to persist in rock environments.  相似文献   
9.
Antarctic subglacial lakes have, over the past few years, been hypothesised to house unique forms of life and hold detailed sedimentary records of past climate change. Testing this hypothesis requires in situ examinations. The direct measurement of subglacial lakes has been considered ever since the largest and best-known lake, named Lake Vostok, was identified as having a deep water-column. The Subglacial Antarctic Lake Environments (SALE) programme, set up by the Scientific Committee on Antarctic Research (SCAR) to oversee subglacial lakes research, state that prior exploration of smaller lakes would be a “prudent way forward”. Over 145 subglacial lakes are known to exist in Antarctica, but one lake in West Antarctica, officially named Ellsworth Subglacial Lake (referred to hereafter as Lake Ellsworth), stands out as a candidate for early exploration. A consortium of over 20 scientists from seven countries and 14 institutions has been assembled to plan the exploration of Lake Ellsworth. An eight-year programme is envisaged: 3 years for a geophysical survey, 2 years for equipment development and testing, 1 year for field planning and operation, and 2 years for sample analysis and data interpretation. The science experiment is simple in concept but complex in execution. Lake Ellsworth will be accessed using hot water drilling. Once lake access is achieved, a probe will be lowered down the borehole and into the lake. The probe will contain a series of instruments to measure biological, chemical and physical characteristics of the lake water and sediments, and will utilise a tether to the ice surface through which power, communication and data will be transmitted. The probe will pass through the water column to the lake floor. The probe will then be pulled up and out of the lake, measuring its environment continually as this is done. Once at the ice surface, any water samples collected will be taken from the probe for laboratory analysis (to take place over subsequent years). The duration of the science mission, from deployment of the probe to its retrieval, is likely to take between 24 and 36 h. Measurements to be taken by the probe will provide data about the following: depth, pressure, conductivity and temperature; pH levels; biomolecules (using life marker chips); anions (using a chemical analyzer); visualisation of the environment (using cameras and light sources); dissolved gases (using chromatography); and morphology of the lake floor and sediment structures (using sonar). After the probe has been retrieved, a sediment corer may be dropped into the lake to recover material from the lake floor. Finally, if time permits, a thermistor string may be left in the lake water to take time-dependent measurements of the lake’s water column over subsequent years. Given that the comprehensive geophysical survey of the lake will take place in two seasons during 2007–2009, a two-year instrument and logistic development phase from 2008 (after the lake’s bathymetry has been assessed) makes it possible that the exploration of Lake Ellsworth could take place at the beginning of the next decade.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号